More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Pertidaksamaan segitiga - Wikipedia bahasa Indonesia, ensiklopedia bebas
Pertidaksamaan segitiga - Wikipedia bahasa Indonesia, ensiklopedia bebas

Pertidaksamaan segitiga

  • Alemannisch
  • العربية
  • Беларуская
  • Български
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Հայերեն
  • Íslenska
  • Italiano
  • 日本語
  • 한국어
  • Ligure
  • Lietuvių
  • Nederlands
  • Norsk nynorsk
  • Polski
  • Português
  • Română
  • Русский
  • Српски / srpski
  • Svenska
  • தமிழ்
  • Türkçe
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Wikimedia Commons
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dua contoh ketidaksamaan segitiga. Contoh atas menunjukkan kasus ketika ada ketidaksamaan, dan contoh di bawah menunjukkan kasus ketika ada kesamaan.

Dalam matematika, pertidaksamaan segitiga menyatakan bahwa untuk sebarang segitiga, jumlah panjang dua sisi haruslah lebih besar daripada panjang sisi yang lain.[1][2]

Dalam geometri Euklides dan beberapa geometri lainnya ini adalah teorema. Dalam kasus Euklides, baik pada pernyataan lebih kecil atau sama dengan dan lebih besar atau sama dengan, kesamaan terjadi hanya jika segitiga memiliki sebuah sudut 180° dan dua sudut 0°, seperti yang ditunjukkan pada contoh bawah gambar di kanan. Ketidaksamaan tersebut dapat dilihat secara intuitif dalam R2 atau R3. Gambar di kanan menunjukkan dua contohnya

Geometri Euklides

[sunting | sunting sumber]
Konstruksi Euklides untuk membuktikan pertidaksamaan segitiga pada geometri bidang datar.

Euklides membuktikan pertidaksamaan segitiga pada geometri bidang datar menggunakan konstruksi pada gambar.[3] Dengan menggunakan sebarang segitiga ABC, sebuah segitiga sama kaki dibentuk dengan sisi BC, dan kaki lain BD yang terletak pada perpanjangan garis AB. Dengan menunjukkan bahwa sudut β > α, dapat disimpulkan AD > AC. Namun AD = AB + BD = AB + BC, sehingga didapatkan AB + BC > AC. Bukti ini muncul dalam buku Element Euklides, Buku 1, Proposisi 20.[4]

Daftar pustaka

[sunting | sunting sumber]
  1. ^ Wolfram MathWorld - http://mathworld.wolfram.com/TriangleInequality.html
  2. ^ Khamsi, Mohamed A. (2001). An introduction to metric spaces and fixed point theory. W. A. Kirk. New York: John Wiley. ISBN 0-471-41825-0. OCLC 45393989.
  3. ^ Jacobs, Harold R. (2003). Geometry : seeing, doing, understanding (Edisi 3rd ed). New York: W.H. Freeman and Co. ISBN 0-7167-4361-2. OCLC 53160439.
  4. ^ David E. Joyce (1997). "Euclid's elements, Book 1, Proposition 20". Euclid's elements. Dept. Math and Computer Science, Clark University. Diakses tanggal 2010-06-25.
Ikon rintisan

Artikel bertopik matematika ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.

  • l
  • b
  • s
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Pertidaksamaan_segitiga&oldid=18107344"
Kategori:
  • Galat CS1: teks tambahan: edisi
  • Ketidaksamaan matematika
  • Aljabar linear
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • Semua artikel rintisan
  • Rintisan bertopik matematika
  • Semua artikel rintisan Maret 2021

Best Rank
More Recommended Articles