More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Diferensiasi fungsi trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas
Diferensiasi fungsi trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas

Diferensiasi fungsi trigonometri

  • العربية
  • Català
  • کوردی
  • English
  • Español
  • فارسی
  • ភាសាខ្មែរ
  • Македонски
  • Bahasa Melayu
  • Norsk bokmål
  • Português
  • Русский
  • Tagalog
  • Türkçe
  • Українська
  • Tiếng Việt
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Fungsi Turunan
sin ⁡ ( x ) {\displaystyle \sin(x)} {\displaystyle \sin(x)} cos ⁡ ( x ) {\displaystyle \cos(x)} {\displaystyle \cos(x)}
cos ⁡ ( x ) {\displaystyle \cos(x)} {\displaystyle \cos(x)} − sin ⁡ ( x ) {\displaystyle -\sin(x)} {\displaystyle -\sin(x)}
tan ⁡ ( x ) {\displaystyle \tan(x)} {\displaystyle \tan(x)} sec 2 ⁡ ( x ) {\displaystyle \sec ^{2}(x)} {\displaystyle \sec ^{2}(x)}
cot ⁡ ( x ) {\displaystyle \cot(x)} {\displaystyle \cot(x)} − csc 2 ⁡ ( x ) {\displaystyle -\csc ^{2}(x)} {\displaystyle -\csc ^{2}(x)}
sec ⁡ ( x ) {\displaystyle \sec(x)} {\displaystyle \sec(x)} sec ⁡ ( x ) tan ⁡ ( x ) {\displaystyle \sec(x)\tan(x)} {\displaystyle \sec(x)\tan(x)}
csc ⁡ ( x ) {\displaystyle \csc(x)} {\displaystyle \csc(x)} − csc ⁡ ( x ) cot ⁡ ( x ) {\displaystyle -\csc(x)\cot(x)} {\displaystyle -\csc(x)\cot(x)}
arcsin ⁡ ( x ) {\displaystyle \arcsin(x)} {\displaystyle \arcsin(x)} 1 1 − x 2 {\displaystyle {\frac {1}{\sqrt {1-x^{2}}}}} {\displaystyle {\frac {1}{\sqrt {1-x^{2}}}}}
arccos ⁡ ( x ) {\displaystyle \arccos(x)} {\displaystyle \arccos(x)} − 1 1 − x 2 {\displaystyle {\frac {-1}{\sqrt {1-x^{2}}}}} {\displaystyle {\frac {-1}{\sqrt {1-x^{2}}}}}
arctan ⁡ ( x ) {\displaystyle \arctan(x)} {\displaystyle \arctan(x)} 1 x 2 + 1 {\displaystyle {\frac {1}{x^{2}+1}}} {\displaystyle {\frac {1}{x^{2}+1}}}

Diferensiasi fungsi trigonometri atau turunan fungsi trigonometri adalah proses matematis untuk menemukan turunan suatu fungsi trigonometri atau tingkatan perubahan terkait dengan suatu variabelnya. Fungsi trigonometri yang umum digunakan adalah sin(x), cos(x) dan tan(x). Contohnya, turunan "f(x) = sin(x)" dituliskan "f ′(a) = cos(a)". "f ′(a)" adalah tingkat perubahan sin(x) di titik "a".

Semua turunan fungsi trigonometri lingkaran dapat ditemukan dengan menggunakan turunan sin(x) dan cos(x). Kaidah hasil-bagi lalu digunakan untuk menemukan turunannya. Sementara itu, pencarian turunan fungsi trigonometri invers membutuhkan diferensiasi implisit dan turunan fungsi trigonometri biasa.

Turunan fungsi trigonometri

[sunting | sunting sumber]
d d x sin ⁡ ( x ) = cos ⁡ ( x ) {\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x)} {\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x)}
d d x cos ⁡ ( x ) = − sin ⁡ ( x ) {\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x)} {\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x)}
d d x tan ⁡ ( x ) = ( sin ⁡ ( x ) cos ⁡ ( x ) ) ′ = cos 2 ⁡ ( x ) + sin 2 ⁡ ( x ) cos 2 ⁡ ( x ) = 1 + tan 2 ⁡ ( x ) = sec 2 ⁡ ( x ) {\displaystyle {\frac {d}{dx}}\tan(x)=\left({\frac {\sin(x)}{\cos(x)}}\right)'={\frac {\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}}=1+\tan ^{2}(x)=\sec ^{2}(x)} {\displaystyle {\frac {d}{dx}}\tan(x)=\left({\frac {\sin(x)}{\cos(x)}}\right)'={\frac {\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}}=1+\tan ^{2}(x)=\sec ^{2}(x)}
d d x cot ⁡ ( x ) = ( cos ⁡ ( x ) sin ⁡ ( x ) ) ′ = − sin 2 ⁡ ( x ) − cos 2 ⁡ ( x ) sin 2 ⁡ ( x ) = − ( 1 + cot 2 ⁡ ( x ) ) = − csc 2 ⁡ ( x ) {\displaystyle {\frac {d}{dx}}\cot(x)=\left({\frac {\cos(x)}{\sin(x)}}\right)'={\frac {-\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)}}=-(1+\cot ^{2}(x))=-\csc ^{2}(x)} {\displaystyle {\frac {d}{dx}}\cot(x)=\left({\frac {\cos(x)}{\sin(x)}}\right)'={\frac {-\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)}}=-(1+\cot ^{2}(x))=-\csc ^{2}(x)}
d d x sec ⁡ ( x ) = ( 1 cos ⁡ ( x ) ) ′ = sin ⁡ ( x ) cos 2 ⁡ ( x ) = 1 cos ⁡ ( x ) ⋅ sin ⁡ ( x ) cos ⁡ ( x ) = sec ⁡ ( x ) tan ⁡ ( x ) {\displaystyle {\frac {d}{dx}}\sec(x)=\left({\frac {1}{\cos(x)}}\right)'={\frac {\sin(x)}{\cos ^{2}(x)}}={\frac {1}{\cos(x)}}\cdot {\frac {\sin(x)}{\cos(x)}}=\sec(x)\tan(x)} {\displaystyle {\frac {d}{dx}}\sec(x)=\left({\frac {1}{\cos(x)}}\right)'={\frac {\sin(x)}{\cos ^{2}(x)}}={\frac {1}{\cos(x)}}\cdot {\frac {\sin(x)}{\cos(x)}}=\sec(x)\tan(x)}
d d x csc ⁡ ( x ) = ( 1 sin ⁡ ( x ) ) ′ = − cos ⁡ ( x ) sin 2 ⁡ ( x ) = − 1 sin ⁡ ( x ) ⋅ cos ⁡ ( x ) sin ⁡ ( x ) = − csc ⁡ ( x ) cot ⁡ ( x ) {\displaystyle {\frac {d}{dx}}\csc(x)=\left({\frac {1}{\sin(x)}}\right)'=-{\frac {\cos(x)}{\sin ^{2}(x)}}=-{\frac {1}{\sin(x)}}\cdot {\frac {\cos(x)}{\sin(x)}}=-\csc(x)\cot(x)} {\displaystyle {\frac {d}{dx}}\csc(x)=\left({\frac {1}{\sin(x)}}\right)'=-{\frac {\cos(x)}{\sin ^{2}(x)}}=-{\frac {1}{\sin(x)}}\cdot {\frac {\cos(x)}{\sin(x)}}=-\csc(x)\cot(x)}
d d x arcsin ⁡ ( x ) = 1 1 − x 2 {\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}}} {\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}}}
d d x arccos ⁡ ( x ) = − 1 1 − x 2 {\displaystyle {\frac {d}{dx}}\arccos(x)={\frac {-1}{\sqrt {1-x^{2}}}}} {\displaystyle {\frac {d}{dx}}\arccos(x)={\frac {-1}{\sqrt {1-x^{2}}}}}
d d x arctan ⁡ ( x ) = 1 1 + x 2 {\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}} {\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}}
d d x arccot ( x ) = − 1 1 + x 2 {\displaystyle {\frac {d}{dx}}{\mbox{arccot}}(x)={\frac {-1}{1+x^{2}}}} {\displaystyle {\frac {d}{dx}}{\mbox{arccot}}(x)={\frac {-1}{1+x^{2}}}}
d d x arcsec ( x ) = 1 | x | x 2 − 1 {\displaystyle {\frac {d}{dx}}{\mbox{arcsec}}(x)={\frac {1}{|x|{\sqrt {x^{2}-1}}}}} {\displaystyle {\frac {d}{dx}}{\mbox{arcsec}}(x)={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d d x arccsc ( x ) = − 1 | x | x 2 − 1 {\displaystyle {\frac {d}{dx}}{\mbox{arccsc}}(x)={\frac {-1}{|x|{\sqrt {x^{2}-1}}}}} {\displaystyle {\frac {d}{dx}}{\mbox{arccsc}}(x)={\frac {-1}{|x|{\sqrt {x^{2}-1}}}}}

Daftar pustaka

[sunting | sunting sumber]
  • Handbook of Mathematical Functions, Edited by Abramowitz and Stegun, National Bureau of Standards, Applied Mathematics Series, 55 (1964)
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Diferensiasi_fungsi_trigonometri&oldid=27041586"
Kategori:
  • Kalkulus

Best Rank
More Recommended Articles