More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Identitas Brahmagupta - Wikipedia bahasa Indonesia, ensiklopedia bebas
Identitas Brahmagupta - Wikipedia bahasa Indonesia, ensiklopedia bebas

Identitas Brahmagupta

  • বাংলা
  • English
  • தமிழ்
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Dalam aljabar, identitas Brahmagupta menyatakan untuk n {\displaystyle n} {\displaystyle n} yang diberikan, produk dari dua bilangan berbentuk a 2 + n b 2 {\displaystyle a^{2}+nb^{2}} {\displaystyle a^{2}+nb^{2}} itu sendiri adalah bilangan dari bentuk tersebut. Dengan kata lain, himpunan bilangan tersebut adalah tertutup di bawah perkalian. Secara khusus:

( a 2 + n b 2 ) ( c 2 + n d 2 ) = ( a c − n b d ) 2 + n ( a d + b c ) 2 ( 1 ) = ( a c + n b d ) 2 + n ( a d − b c ) 2 , ( 2 ) {\displaystyle {\begin{aligned}\left(a^{2}+nb^{2}\right)\left(c^{2}+nd^{2}\right)&{}=\left(ac-nbd\right)^{2}+n\left(ad+bc\right)^{2}&&&(1)\\&{}=\left(ac+nbd\right)^{2}+n\left(ad-bc\right)^{2},&&&(2)\end{aligned}}} {\displaystyle {\begin{aligned}\left(a^{2}+nb^{2}\right)\left(c^{2}+nd^{2}\right)&{}=\left(ac-nbd\right)^{2}+n\left(ad+bc\right)^{2}&&&(1)\\&{}=\left(ac+nbd\right)^{2}+n\left(ad-bc\right)^{2},&&&(2)\end{aligned}}}

Baik (1) dan (2) dapat diverifikasi dengan pengembangan setiap sisi persamaan. Juga, (2) dapat diperoleh dari (1), atau (1) dari (2), dengan mengubah b menjadi −b.

Identitas ini berlaku baik dalam gelanggang bilangan bulat dan gelanggang bilangan rasional, dan khususnya dalam gelanggang komutatif mana pun.

Sejarah

[sunting | sunting sumber]

Identitas adalah generalisasi dari apa yang disebut identitas Fibonacci (dimana n=1) yang sebenarnya ditemukan dalam Arithmetica Diophantus' (III, 19). Identitas tersebut ditemukan kembali oleh Brahmagupta (598–668), seorang matematikawan India dan astronom, yang menggeneralisasi dan menggunakannya dalam studinya tentang apa yang saat ini disebut persamaan Pell. Brahmasphutasiddhanta miliknya diterjemahkan dari Sansekerta ke Arab oleh Mohammad al-Fazari, dan kemudian diterjemahkan ke Latin pada tahun 1126.[1] Identitas tersebut kemudian muncul dalam Book of Squares (Fibonacci) pada tahun 1225.

Penerapan persamaan Pell

[sunting | sunting sumber]

Dalam konteks aslinya, Brahmagupta menerapkan penemuannya pada solusi dari apa yang kemudian disebut persamaan Pell, yaitu x2 − Ny2 = 1. Menggunakan identitas dalam formulir

( x 1 2 − N y 1 2 ) ( x 2 2 − N y 2 2 ) = ( x 1 x 2 + N y 1 y 2 ) 2 − N ( x 1 y 2 + x 2 y 1 ) 2 , {\displaystyle (x_{1}^{2}-Ny_{1}^{2})(x_{2}^{2}-Ny_{2}^{2})=(x_{1}x_{2}+Ny_{1}y_{2})^{2}-N(x_{1}y_{2}+x_{2}y_{1})^{2},} {\displaystyle (x_{1}^{2}-Ny_{1}^{2})(x_{2}^{2}-Ny_{2}^{2})=(x_{1}x_{2}+Ny_{1}y_{2})^{2}-N(x_{1}y_{2}+x_{2}y_{1})^{2},}

ia "menyusun" rangkap tiga (x1, y1, k1) dan (x2, y2, k2) itu adalah solusi dari x2 − Ny2 = k, untuk menghasilkan rangkap tiga baru

( x 1 x 2 + N y 1 y 2 , x 1 y 2 + x 2 y 1 , k 1 k 2 ) . {\displaystyle (x_{1}x_{2}+Ny_{1}y_{2}\,,\,x_{1}y_{2}+x_{2}y_{1}\,,\,k_{1}k_{2}).} {\displaystyle (x_{1}x_{2}+Ny_{1}y_{2}\,,\,x_{1}y_{2}+x_{2}y_{1}\,,\,k_{1}k_{2}).}

Ini tidak hanya memberikan cara untuk menghasilkan banyak solusi untuk x2 − Ny2 = 1 dimulai dengan satu solusi, tetapi juga, dengan membagi komposisi tersebut dengan k1k2, solusi bilangan bulat atau "dekat bilangan bulat" sering kali diperoleh. Metode umum untuk menyelesaikan persamaan Pell yang diberikan oleh Bhaskara II pada tahun 1150, yaitu metode chakravala (siklik), juga didasarkan pada identitas ini.[2]

Lihat pula

[sunting | sunting sumber]
  • Matriks Brahmagupta
  • Identitas Brahmagupta–Fibonacci
  • Rumus interpolasi Brahmagupta
  • matematika India
  • Daftar matematikawan India

Referensi

[sunting | sunting sumber]
  1. ^ George G. Joseph (2000). The Crest of the Peacock, hal. 306. Pers Universitas Princeton. ISBN 0-691-00659-8.
  2. ^ John Stillwell (2002), Mathematics and its history (Edisi 2), Springer, hlm. 72–76, ISBN 978-0-387-95336-6

Pranala luar

[sunting | sunting sumber]
  • Identitas Brahmagupta di PlanetMath
  • Identitas Brahmagupta di MathWorld
  • Kumpulan Identitas Aljabar
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Identitas_Brahmagupta&oldid=23667199"
Kategori:
  • Aljabar
  • Aljabar dasar
  • Identitas matematika
  • Brahmagupta
Kategori tersembunyi:
  • Pages using the JsonConfig extension

Best Rank
More Recommended Articles