More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Kalkulus proposisional - Wikipedia bahasa Indonesia, ensiklopedia bebas
Kalkulus proposisional - Wikipedia bahasa Indonesia, ensiklopedia bebas

Kalkulus proposisional

  • Afrikaans
  • العربية
  • Asturianu
  • Беларуская
  • Беларуская (тарашкевіца)
  • Български
  • Català
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Nordfriisk
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Հայերեն
  • Ido
  • Italiano
  • 日本語
  • 한국어
  • Кыргызча
  • Latina
  • Lietuvių
  • Монгол
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • پښتو
  • Português
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Svenska
  • ไทย
  • Türkçe
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Wikimedia Commons
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Kalkulus proposisional adalah sistem formal untuk menyatakan rumus proposisi dan membuktikannya dengan cara menggabungkan rumus atomik dan operator logika.

Beberapa contoh operator logika adalah:

  • ¬ {\displaystyle \lnot } {\displaystyle \lnot } (negasi)
  • ∧ {\displaystyle \land } {\displaystyle \land } (konjungsi)
  • ∨ {\displaystyle \lor } {\displaystyle \lor } (disjungsi)
  • → {\displaystyle \rightarrow } {\displaystyle \rightarrow } (implikasi)
  • ↔ {\displaystyle \leftrightarrow } {\displaystyle \leftrightarrow } (ekuivalensi)
Bentuk-bentuk argumen
Nama Sequent
Modus Ponens ( ( p → q ) ∧ p ) ⊢ q {\displaystyle ((p\to q)\land p)\vdash q} {\displaystyle ((p\to q)\land p)\vdash q}
Modus Tollens ( ( p → q ) ∧ ¬ q ) ⊢ ¬ p {\displaystyle ((p\to q)\land \neg q)\vdash \neg p} {\displaystyle ((p\to q)\land \neg q)\vdash \neg p}
Silogisme Hipotesis ( ( p → q ) ∧ ( q → r ) ) ⊢ ( p → r ) {\displaystyle ((p\to q)\land (q\to r))\vdash (p\to r)} {\displaystyle ((p\to q)\land (q\to r))\vdash (p\to r)}
Silogisme Disjungtif ( ( p ∨ q ) ∧ ¬ p ) ⊢ q {\displaystyle ((p\lor q)\land \neg p)\vdash q} {\displaystyle ((p\lor q)\land \neg p)\vdash q}
Dilema Konstruktif ( ( p → q ) ∧ ( r → s ) ∧ ( p ∨ r ) ) ⊢ ( q ∨ s ) {\displaystyle ((p\to q)\land (r\to s)\land (p\lor r))\vdash (q\lor s)} {\displaystyle ((p\to q)\land (r\to s)\land (p\lor r))\vdash (q\lor s)}
Dilema Destruktif ( ( p → q ) ∧ ( r → s ) ∧ ( ¬ q ∨ ¬ s ) ) ⊢ ( ¬ p ∨ ¬ r ) {\displaystyle ((p\to q)\land (r\to s)\land (\neg q\lor \neg s))\vdash (\neg p\lor \neg r)} {\displaystyle ((p\to q)\land (r\to s)\land (\neg q\lor \neg s))\vdash (\neg p\lor \neg r)}
Dilema Bidireksi ( ( p → q ) ∧ ( r → s ) ∧ ( p ∨ ¬ s ) ) ⊢ ( q ∨ ¬ r ) {\displaystyle ((p\to q)\land (r\to s)\land (p\lor \neg s))\vdash (q\lor \neg r)} {\displaystyle ((p\to q)\land (r\to s)\land (p\lor \neg s))\vdash (q\lor \neg r)}
Simplifikasi ( p ∧ q ) ⊢ p {\displaystyle (p\land q)\vdash p} {\displaystyle (p\land q)\vdash p}
Konjungsi p , q ⊢ ( p ∧ q ) {\displaystyle p,q\vdash (p\land q)} {\displaystyle p,q\vdash (p\land q)}
Penambahan p ⊢ ( p ∨ q ) {\displaystyle p\vdash (p\lor q)} {\displaystyle p\vdash (p\lor q)}
Komposisi ( ( p → q ) ∧ ( p → r ) ) ⊢ ( p → ( q ∧ r ) ) {\displaystyle ((p\to q)\land (p\to r))\vdash (p\to (q\land r))} {\displaystyle ((p\to q)\land (p\to r))\vdash (p\to (q\land r))}
Teorema De Morgan ¬ ( p ∧ q ) ⊢ ( ¬ p ∨ ¬ q ) {\displaystyle \neg (p\land q)\vdash (\neg p\lor \neg q)} {\displaystyle \neg (p\land q)\vdash (\neg p\lor \neg q)}
Komutasi ( p ∨ q ) ⊢ ( q ∨ p ) {\displaystyle (p\lor q)\vdash (q\lor p)} {\displaystyle (p\lor q)\vdash (q\lor p)}
Asosiasi ( p ∨ ( q ∨ r ) ) ⊢ ( ( p ∨ q ) ∨ r ) {\displaystyle (p\lor (q\lor r))\vdash ((p\lor q)\lor r)} {\displaystyle (p\lor (q\lor r))\vdash ((p\lor q)\lor r)}
Distribusi ( p ∧ ( q ∨ r ) ) ⊢ ( ( p ∧ q ) ∨ ( p ∧ r ) ) {\displaystyle (p\land (q\lor r))\vdash ((p\land q)\lor (p\land r))} {\displaystyle (p\land (q\lor r))\vdash ((p\land q)\lor (p\land r))}
Dobel Negasi p ⊢ ¬ ¬ p {\displaystyle p\vdash \neg \neg p} {\displaystyle p\vdash \neg \neg p}
Transposisi ( p → q ) ⊢ ( ¬ q → ¬ p ) {\displaystyle (p\to q)\vdash (\neg q\to \neg p)} {\displaystyle (p\to q)\vdash (\neg q\to \neg p)}
Implikasi ( p → q ) ⊢ ( ¬ p ∨ q ) {\displaystyle (p\to q)\vdash (\neg p\lor q)} {\displaystyle (p\to q)\vdash (\neg p\lor q)}
Ekuivalensi ( p ↔ q ) ⊢ ( ( p → q ) ∧ ( q → p ) ) {\displaystyle (p\leftrightarrow q)\vdash ((p\to q)\land (q\to p))} {\displaystyle (p\leftrightarrow q)\vdash ((p\to q)\land (q\to p))}
Tautologi p ⊢ ( p ∨ p ) {\displaystyle p\vdash (p\lor p)} {\displaystyle p\vdash (p\lor p)}
Tertium non datur ⊢ ( p ∨ ¬ p ) {\displaystyle \vdash (p\lor \neg p)} {\displaystyle \vdash (p\lor \neg p)}
Non-Kontradiksi ⊢ ¬ ( p ∧ ¬ p ) {\displaystyle \vdash \neg (p\land \neg p)} {\displaystyle \vdash \neg (p\land \neg p)}

Pustaka

[sunting | sunting sumber]
  • Brown, Frank Markham (2003), Boolean Reasoning: The Logic of Boolean Equations, 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY.
  • Chang, C.C., dan Keisler, H.J. (1973), Model Theory, North-Holland, Amsterdam, Netherlands.
  • Kohavi, Zvi (1978), Switching and Finite Automata Theory, 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
  • Korfhage, Robert R. (1974), Discrete Computational Structures, Academic Press, New York, NY.
  • Lambek, J. dan Scott, P.J. (1986), Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK.
  • Mendelson, Elliot (1964), Introduction to Mathematical Logic, D. Van Nostrand Company.

Pranala luar

[sunting | sunting sumber]
  • www.ltn.lv/~podnieks/mlog/ml2.htm
  • www.fecundity.com/logic/
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Kalkulus_proposisional&oldid=25743664"
Kategori:
  • Logika

Best Rank
More Recommended Articles