More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Matriks permutasi - Wikipedia bahasa Indonesia, ensiklopedia bebas
Matriks permutasi - Wikipedia bahasa Indonesia, ensiklopedia bebas

Matriks permutasi

  • العربية
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • עברית
  • Magyar
  • Italiano
  • 日本語
  • 한국어
  • Nederlands
  • Piemontèis
  • Português
  • Română
  • Русский
  • Slovenščina
  • Svenska
  • தமிழ்
  • Українська
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Wikimedia Commons
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Contoh dari Matriks permutasi.

Dalam matematika, khususnya dalam teori matriks, matriks permutasi adalah matriks biner persegi yang memiliki tepat satu entri 1 di setiap baris dan setiap kolom dan 0 di tempat lain. Setiap matriks tersebut, misalnya P, mewakili permutasi dari m elemen dan, ketika digunakan untuk mengalikan matriks lain, katakanlah A, menghasilkan permutasi baris (saat pra-perkalian, untuk membentuk PA) atau kolom (saat pasca-perkalian, untuk membentuk AP) dari matriks A.

Definisi

[sunting | sunting sumber]

Diberikan permutasi π dari m elemen,

π : { 1 , … , m } → { 1 , … , m } {\displaystyle \pi :\lbrace 1,\ldots ,m\rbrace \to \lbrace 1,\ldots ,m\rbrace } {\displaystyle \pi :\lbrace 1,\ldots ,m\rbrace \to \lbrace 1,\ldots ,m\rbrace }

diwakili dalam bentuk dua baris oleh

( 1 2 ⋯ m π ( 1 ) π ( 2 ) ⋯ π ( m ) ) , {\displaystyle {\begin{pmatrix}1&2&\cdots &m\\\pi (1)&\pi (2)&\cdots &\pi (m)\end{pmatrix}},} {\displaystyle {\begin{pmatrix}1&2&\cdots &m\\\pi (1)&\pi (2)&\cdots &\pi (m)\end{pmatrix}},}

ada dua cara alami untuk mengasosiasikan permutasi dengan matriks permutasi; yaitu, dimulai dengan matriks identitas m × m, Im, baik mengubah kolom atau mengubah baris, menurut π. Kedua metode untuk mendefinisikan matriks permutasi muncul dalam literatur dan properti yang diekspresikan dalam satu representasi dapat dengan mudah dikonversi ke representasi lainnya. Artikel ini terutama akan membahas salah satu dari representasi ini dan yang lainnya hanya akan disebutkan jika ada perbedaan yang harus diperhatikan.

Matriks permutasi m × m Pπ = (pij) diperoleh dengan mengubah kolom-kolom dari matriks identitas Im, yaitu untuk setiap i, i, pij = 1 if j = π(i) sebaliknya, akan disebut sebagai representasi kolom dalam artikel ini. Karena entri pada baris i semuanya 0 kecuali bahwa 1 muncul di kolom (i), kita dapat menulis

P π = [ e π ( 1 ) e π ( 2 ) ⋮ e π ( m ) ] , {\displaystyle P_{\pi }={\begin{bmatrix}\mathbf {e} _{\pi (1)}\\\mathbf {e} _{\pi (2)}\\\vdots \\\mathbf {e} _{\pi (m)}\end{bmatrix}},} {\displaystyle P_{\pi }={\begin{bmatrix}\mathbf {e} _{\pi (1)}\\\mathbf {e} _{\pi (2)}\\\vdots \\\mathbf {e} _{\pi (m)}\end{bmatrix}},}

dimana e j {\displaystyle \mathbf {e} _{j}} {\displaystyle \mathbf {e} _{j}}, vektor basis standar, menyatakan vektor baris dengan panjang m dengan 1 pada posisi ke-j dan 0 pada setiap posisi lainnya.[1]

Misalnya, matriks permutasi Pπ sesuai dengan permutasi π = ( 1 2 3 4 5 1 4 2 5 3 ) {\displaystyle \pi ={\begin{pmatrix}1&2&3&4&5\\1&4&2&5&3\end{pmatrix}}} {\displaystyle \pi ={\begin{pmatrix}1&2&3&4&5\\1&4&2&5&3\end{pmatrix}}} adalah

P π = [ e π ( 1 ) e π ( 2 ) e π ( 3 ) e π ( 4 ) e π ( 5 ) ] = [ e 1 e 4 e 2 e 5 e 3 ] = [ 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 ] . {\displaystyle P_{\pi }={\begin{bmatrix}\mathbf {e} _{\pi (1)}\\\mathbf {e} _{\pi (2)}\\\mathbf {e} _{\pi (3)}\\\mathbf {e} _{\pi (4)}\\\mathbf {e} _{\pi (5)}\end{bmatrix}}={\begin{bmatrix}\mathbf {e} _{1}\\\mathbf {e} _{4}\\\mathbf {e} _{2}\\\mathbf {e} _{5}\\\mathbf {e} _{3}\end{bmatrix}}={\begin{bmatrix}1&0&0&0&0\\0&0&0&1&0\\0&1&0&0&0\\0&0&0&0&1\\0&0&1&0&0\end{bmatrix}}.} {\displaystyle P_{\pi }={\begin{bmatrix}\mathbf {e} _{\pi (1)}\\\mathbf {e} _{\pi (2)}\\\mathbf {e} _{\pi (3)}\\\mathbf {e} _{\pi (4)}\\\mathbf {e} _{\pi (5)}\end{bmatrix}}={\begin{bmatrix}\mathbf {e} _{1}\\\mathbf {e} _{4}\\\mathbf {e} _{2}\\\mathbf {e} _{5}\\\mathbf {e} _{3}\end{bmatrix}}={\begin{bmatrix}1&0&0&0&0\\0&0&0&1&0\\0&1&0&0&0\\0&0&0&0&1\\0&0&1&0&0\end{bmatrix}}.}

Amati bahwa kolom ke-j dari matriks identitas I5 sekarang muncul sebagai kolom ke-π(j) dari Pπ.

Representasi lain, diperoleh dengan permutasi baris dari matriks identitas Im, yaitu, untuk setiap j, pij = 1 jika i = π(j) dan pij = 0 sebaliknya, akan disebut sebagai representasi baris.

Referensi

[sunting | sunting sumber]
  1. ^ Brualdi (2006) p.2
  • Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Vol. 108. Cambridge: Cambridge University Press. ISBN 0-521-86565-4. Zbl 1106.05001.
  • Joseph, Najnudel; Ashkan, Nikeghbali (2010), The Distribution of Eigenvalues of Randomized Permutation Matrices, arXiv:1005.0402, Bibcode:2010arXiv1005.0402N


Ikon rintisan

Artikel bertopik matematika ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.

  • l
  • b
  • s
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Matriks_permutasi&oldid=27533962"
Kategori:
  • Matriks
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • Semua artikel rintisan
  • Rintisan bertopik matematika
  • Semua artikel rintisan Juli 2025

Best Rank
More Recommended Articles