More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Pecahan berlanjut - Wikipedia bahasa Indonesia, ensiklopedia bebas
Pecahan berlanjut - Wikipedia bahasa Indonesia, ensiklopedia bebas

Pecahan berlanjut

  • العربية
  • English
  • Español
  • فارسی
  • Français
  • Galego
  • Slovenščina
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
  • Switch to legacy parser
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini dalam proses pengembangan atau penambahan
a 0 + 1 a 1 + 1 a 2 + 1 ⋱ + 1 a n {\displaystyle a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{\ddots +{\cfrac {1}{a_{n}}}}}}}}}} {\displaystyle a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{\ddots +{\cfrac {1}{a_{n}}}}}}}}}}

Dalam matematika, pecahan berlanjut atau pecahan kontinu (bahasa Inggris: Continued fraction) adalah sebuah ekspresi yang didapat melalui proses iteratif mewakili bilangan sebagai jawaban dari bagian bilangan bulatnya.[1] Bilangan bulat a i {\displaystyle a_{i}} {\displaystyle a_{i}} disebut koefisien dari pecahan berlanjut.[2]

Catatan

[sunting | sunting sumber]
  1. ↑ "Continued fraction - mathematics".
  2. ↑ (Pettofrezzo & Byrkit 1970, hlm. 150)

Referensi

[sunting | sunting sumber]
  • Siebeck, H. (1846). "Ueber periodische Kettenbrüche". J. Reine Angew. Math. Vol. 33. hlm. 68–70.
  • Heilermann, J. B. H. (1846). "Ueber die Verwandlung von Reihen in Kettenbrüche". J. Reine Angew. Math. Vol. 33. hlm. 174–188.
  • Magnus, Arne (1962). "Continued fractions associated with the Padé Table". Math. Z. Vol. 78. hlm. 361–374.
  • Chen, Chen-Fan; Shieh, Leang-San (1969). "Continued fraction inversion by Routh's Algorithm". IEEE Trans. Circuit Theory. Vol. 16, no. 2. hlm. 197–202. doi:10.1109/TCT.1969.1082925.
  • Gragg, William B. (1974). "Matrix interpretations and applications of the continued fraction algorithm". Rocky Mount. J. Math. Vol. 4, no. 2. hlm. 213. doi:10.1216/RJM-1974-4-2-213.
  • Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. Vol. 11. Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8.
  • Khinchin, A. Ya. (1964) [Originally published in Russian, 1935]. Continued Fractions. University of Chicago Press. ISBN 0-486-69630-8.
  • Long, Calvin T. (1972), Elementary Introduction to Number Theory (Edisi 2nd), Lexington: D. C. Heath and Company, LCCN 77-171950
  • Perron, Oskar (1950). Die Lehre von den Kettenbrüchen. New York, NY: Chelsea Publishing Company.
  • Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77-81766
  • Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions. World Scientific Press. ISBN 981-02-1047-7.
  • H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
  • Cuyt, A.; Brevik Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W. B. (2008). Handbook of Continued fractions for Special functions. Springer Verlag. ISBN 978-1-4020-6948-2.
  • Rieger, G. J. (1982). "A new approach to the real numbers (motivated by continued fractions)". Abh. Braunschweig.Wiss. Ges. Vol. 33. hlm. 205–217.

Pranala luar

[sunting | sunting sumber]
  • Hazewinkel, Michiel, ed. (2001) [1994], "Continued fraction", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • An Introduction to the Continued Fraction
  • Linas Vepstas Continued Fractions and Gaps (2004) reviews chaotic structures in continued fractions.
  • Continued Fractions on the Stern-Brocot Tree at cut-the-knot
  • The Antikythera Mechanism I: Gear ratios and continued fractions
  • Continued fraction calculator, WIMS.
  • Continued Fraction Arithmetic Gosper's first continued fractions paper, unpublished. Cached on the Internet Archive's Wayback Machine
  • (Inggris) Weisstein, Eric W. "Continued Fraction". MathWorld.
  • Continued Fractions by Stephen Wolfram and Continued Fraction Approximations of the Tangent Function by Michael Trott, Wolfram Demonstrations Project.
  • Templat:OEIS el
  • A view into "fractional interpolation" of a continued fraction {1; 1, 1, 1, ...}
  • Best rational approximation through continued fractions
Lihat entri pecahan berlanjut di kamus bebas Wikikamus.
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Pecahan_berlanjut&oldid=27966467"
Kategori:
  • Galat CS1: tanggal ISBN
  • Analisis matematika

Best Rank
More Recommended Articles