More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Polilogaritma - Wikipedia bahasa Indonesia, ensiklopedia bebas
Polilogaritma - Wikipedia bahasa Indonesia, ensiklopedia bebas

Polilogaritma

  • العربية
  • Български
  • Deutsch
  • English
  • Español
  • فارسی
  • Français
  • עברית
  • Magyar
  • Italiano
  • 日本語
  • 한국어
  • Polski
  • Português
  • Русский
  • Svenska
  • Українська
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Wikimedia Commons
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Dalam matematika, polilogaritma (juga dikenal sebagai fungsi Jonquière, untuk Alfred Jonquière) adalah fungsi khusus Lis(z) dengan orde s dan argumen z. Hanya untuk nilai-nilai khusus s, polilogaritma direduksi menjadi fungsi dasar seperti logaritma natural atau fungsi rasional. Dalam statistika kuantum, fungsi polilogaritma muncul sebagai bentuk tertutup integral dari distribusi Fermi–Dirac dan distribusi Bose–Einstein, dan juga dikenal sebagai integral Fermi–Dirac atau integral Bose–Einstein. Dalam elektrodinamika kuantum, polilogaritma dengan orde bilangan bulat positif muncul dalam kalkulasi proses yang direpresentasikan oleh diagram Feynman orde lebih tinggi.

Referensi

[sunting | sunting sumber]
  • Abel, N.H. (1881) [1826]. "Note sur la fonction ψ x = x + x 2 2 2 + x 3 3 2 + ⋯ + x n n 2 + ⋯ {\displaystyle \scriptstyle \psi x=x+{\frac {x^{2}}{2^{2}}}+{\frac {x^{3}}{3^{2}}}+\cdots +{\frac {x^{n}}{n^{2}}}+\cdots } {\displaystyle \scriptstyle \psi x=x+{\frac {x^{2}}{2^{2}}}+{\frac {x^{3}}{3^{2}}}+\cdots +{\frac {x^{n}}{n^{2}}}+\cdots }" (PDF). Dalam Sylow, L.; Lie, S. (ed.). Œuvres complètes de Niels Henrik Abel − Nouvelle édition, Tome II (dalam bahasa Prancis). Christiania [Oslo]: Grøndahl & Søn. hlm. 189–193. (this 1826 manuscript was only published posthumously.)
  • Abramowitz, M.; Stegun, I.A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications. ISBN 978-0-486-61272-0.
  • Apostol, T.M. (2010), "Polilogaritma", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Bailey, D.H.; Borwein, P.B.; Plouffe, S. (April 1997). "On the Rapid Computation of Various Polylogarithmic Constants" (PDF). Mathematics of Computation. 66 (218): 903–913. Bibcode:1997MaCom..66..903B. doi:10.1090/S0025-5718-97-00856-9.
  • Bailey, D.H.; Broadhurst, D.J. (June 20, 1999). "A Seventeenth-Order Polylogarithm Ladder". arΧiv:math.CA/9906134. 
  • Berndt, B.C. (1994). Ramanujan's Notebooks, Part IV. New York: Springer-Verlag. hlm. 323–326. ISBN 978-0-387-94109-7.
  • Boersma, J.; Dempsey, J.P. (1992). "On the evaluation of Legendre's chi-function". Mathematics of Computation. 59 (199): 157–163. doi:10.2307/2152987. JSTOR 2152987.
  • Borwein, D.; Borwein, J.M.; Girgensohn, R. (1995). "Explicit evaluation of Euler sums" (PDF). Proceedings of the Edinburgh Mathematical Society. Series 2. 38 (2): 277–294. doi:10.1017/S0013091500019088.
  • Borwein, J.M.; Bradley, D.M.; Broadhurst, D.J.; Lisonek, P. (2001). "Special Values of Multiple Polylogarithms". Transactions of the American Mathematical Society. 353 (3): 907–941. arXiv:math/9910045. doi:10.1090/S0002-9947-00-02616-7. S2CID 11373360.
  • Broadhurst, D.J. (April 21, 1996). "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory". arΧiv:hep-th/9604128. 
  • Clunie, J. (1954). "On Bose-Einstein functions". Proceedings of the Physical Society. Series A. 67 (7): 632–636. Bibcode:1954PPSA...67..632C. doi:10.1088/0370-1298/67/7/308.
  • Cohen, H.; Lewin, L.; Zagier, D. (1992). "A Sixteenth-Order Polylogarithm Ladder" (PS). Experimental Mathematics. 1 (1): 25–34.
  • Coxeter, H.S.M. (1935). "The functions of Schläfli and Lobatschefsky". Quarterly Journal of Mathematics. 6 (1): 13–29. Bibcode:1935QJMat...6...13C. doi:10.1093/qmath/os-6.1.13. JFM 61.0395.02.
  • Cvijovic, D.; Klinowski, J. (1997). "Continued-fraction expansions for the Riemann zeta function and polylogarithms" (PDF). Proceedings of the American Mathematical Society. 125 (9): 2543–2550. doi:10.1090/S0002-9939-97-04102-6.
  • Cvijovic, D. (2007). "New integral representations of the polylogarithm function". Proceedings of the Royal Society A. 463 (2080): 897–905. arXiv:0911.4452. Bibcode:2007RSPSA.463..897C. doi:10.1098/rspa.2006.1794. S2CID 115156743.
  • Dingle, R. B. (1955). "The evaluation of integrals containing a parameter". Applied Scientific Research, Section B (dalam bahasa Inggris). 4 (1): 401–410. doi:10.1007/BF02920017. ISSN 0365-7140.
  • Dingle, R. B. (1957a). "The Bose-Einstein integrals B p ( η ) = ( p ! ) − 1 ∫ 0 ∞ ε p ( e ε − η − 1 ) − 1 d ε {\displaystyle {\mathcal {B}}_{p}(\eta )=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(e^{\varepsilon -\eta }-1})^{-1}d\varepsilon } {\displaystyle {\mathcal {B}}_{p}(\eta )=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(e^{\varepsilon -\eta }-1})^{-1}d\varepsilon }". Applied Scientific Research, Section B (dalam bahasa Inggris). 6 (1): 240–244. doi:10.1007/BF02920380. ISSN 0365-7140.
  • Dingle, R. B.; Arndt, Doreen; Roy, S. K. (1957). "The integrals A p ( x ) = ( p ! ) − 1 ∫ 0 ∞ ε p ( ε + x ) − 1 e − ε d ε {\displaystyle {\mathfrak {A}}_{p}(x)=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(\varepsilon +x})^{-1}e^{-\varepsilon }d\varepsilon } {\displaystyle {\mathfrak {A}}_{p}(x)=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(\varepsilon +x})^{-1}e^{-\varepsilon }d\varepsilon } and B p ( x ) = ( p ! ) − 1 ∫ 0 ∞ ε p ( ε + x ) − 2 e − ε d ε {\displaystyle {\mathfrak {B}}_{p}(x)=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(\varepsilon +x})^{-2}e^{-\varepsilon }d\varepsilon } {\displaystyle {\mathfrak {B}}_{p}(x)=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(\varepsilon +x})^{-2}e^{-\varepsilon }d\varepsilon } and their tabulation". Applied Scientific Research, Section B (dalam bahasa Inggris). 6 (1): 144–154. doi:10.1007/BF02920371. ISSN 0365-7140.
  • Dingle, R. B. (1957b). "The Fermi-Dirac integrals F p ( η ) = ( p ! ) − 1 ∫ 0 ∞ ε p ( e ε − η + 1 ) − 1 d ε {\displaystyle {\mathcal {F}}_{p}(\eta )=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(e^{\varepsilon -\eta }+1})^{-1}d\varepsilon } {\displaystyle {\mathcal {F}}_{p}(\eta )=(p!)^{-1}\int \limits _{0}^{\infty }{\varepsilon ^{p}(e^{\varepsilon -\eta }+1})^{-1}d\varepsilon }". Applied Scientific Research, Section B (dalam bahasa Inggris). 6 (1): 225–239. doi:10.1007/BF02920379. ISSN 0365-7140.
  • Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (1981). Higher Transcendental Functions, Vol. 1 (PDF). Malabar, FL: R.E. Krieger Publishing. ISBN 978-0-89874-206-0. (this is a reprint of the McGraw–Hill original of 1953.)
  • Fornberg, B.; Kölbig, K.S. (1975). "Complex zeros of the Jonquière or polylogarithm function". Mathematics of Computation. 29 (130): 582–599. doi:10.2307/2005579. JSTOR 2005579.
  • GNU Scientific Library (2010). "Reference Manual". Diakses tanggal 2010-06-13.
  • Gradshteyn, I. S.; Ryzhik, I. M. (2015). "9.55 The function Φ ( z , s , v ) {\displaystyle \Phi (z,s,v)} {\displaystyle \Phi (z,s,v)}: Series representation 9.553, 9.554". Table of Integrals, Series, and Products (Edisi 7th). Amsterdam: Elsevier/Academic Press. hlm. 1075. ISBN 978-0-12-384933-5. MR 3307944.
  • Guillera, J.; Sondow, J. (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math.NT/0506319. doi:10.1007/s11139-007-9102-0. S2CID 119131640.
  • Hain, R.M. (March 25, 1992). "Classical polylogarithms". arΧiv:alg-geom/9202022. 
  • Jahnke, E.; Emde, F. (1945). Tables of Functions with Formulae and Curves (Edisi 4th). New York: Dover Publications.
  • Jonquière, A. (1889). "Note sur la série ∑ n = 1 ∞ x n n s {\displaystyle \scriptstyle \sum _{n=1}^{\infty }{\frac {x^{n}}{n^{s}}}} {\displaystyle \scriptstyle \sum _{n=1}^{\infty }{\frac {x^{n}}{n^{s}}}}" (PDF). Bulletin de la Société Mathématique de France (dalam bahasa Prancis). 17: 142–152. doi:10.24033/bsmf.392. JFM 21.0246.02.
  • Kölbig, K.S.; Mignaco, J.A.; Remiddi, E. (1970). "On Nielsen's generalized polylogarithms and their numerical calculation". BIT. 10: 38–74. doi:10.1007/BF01940890. S2CID 119672619.
  • Kirillov, A.N. (1995). "Dilogarithm identities". Progress of Theoretical Physics Supplement. 118: 61–142. arXiv:hep-th/9408113. Bibcode:1995PThPS.118...61K. doi:10.1143/PTPS.118.61. S2CID 119177149.
  • Lewin, L. (1958). Dilogarithms and Associated Functions. London: Macdonald. MR 0105524.
  • Lewin, L. (1981). Polylogarithms and Associated Functions. New York: North-Holland. ISBN 978-0-444-00550-2.
  • Lewin, L., ed. (1991). Structural Properties of Polylogarithms. Mathematical Surveys and Monographs. Vol. 37. Providence, RI: Amer. Math. Soc. ISBN 978-0-8218-1634-9.
  • Markman, B. (1965). "The Riemann Zeta Function". BIT. 5: 138–141.
  • Maximon, L.C. (2003). "The Dilogarithm Function for Complex Argument". Proceedings of the Royal Society A. 459 (2039): 2807–2819. Bibcode:2003RSPSA.459.2807M. doi:10.1098/rspa.2003.1156. S2CID 122271244.
  • McDougall, J.; Stoner, E.C. (1938). "The computation of Fermi-Dirac functions". Philosophical Transactions of the Royal Society A. 237 (773): 67–104. Bibcode:1938RSPTA.237...67M. doi:10.1098/rsta.1938.0004. JFM 64.1500.04.
  • Nielsen, N. (1909). "Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Eine Monographie". Nova Acta Leopoldina (dalam bahasa Jerman). XC (3). Halle – Leipzig, Germany: Kaiserlich-Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher: 121–212. JFM 40.0478.01.
  • Prudnikov, A.P.; Marichev, O.I.; Brychkov, Yu.A. (1990). Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach. ISBN 978-2-88124-682-1. (see § 1.2, "The generalized zeta function, Bernoulli polynomials, Euler polynomials, and polylogarithms", p. 23.)
  • Robinson, J.E. (1951). "Note on the Bose-Einstein integral functions". Physical Review. Series 2. 83 (3): 678–679. Bibcode:1951PhRv...83..678R. doi:10.1103/PhysRev.83.678.
  • Rogers, L.J. (1907). "On function sum theorems connected with the series ∑ n = 1 ∞ x n n 2 {\displaystyle \scriptstyle \sum _{n=1}^{\infty }{\frac {x^{n}}{n^{2}}}} {\displaystyle \scriptstyle \sum _{n=1}^{\infty }{\frac {x^{n}}{n^{2}}}}". Proceedings of the London Mathematical Society (2). 4 (1): 169–189. doi:10.1112/plms/s2-4.1.169. JFM 37.0428.03.
  • Schrödinger, E. (1952). Statistical Thermodynamics (Edisi 2nd). Cambridge, UK: Cambridge University Press.
  • Truesdell, C. (1945). "On a function which occurs in the theory of the structure of polymers". Annals of Mathematics. Second Series. 46 (1): 144–157. doi:10.2307/1969153. JSTOR 1969153.
  • Vepstas, L. (2008). "An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions". Numerical Algorithms. 47 (3): 211–252. arXiv:math.CA/0702243. Bibcode:2008NuAlg..47..211V. doi:10.1007/s11075-007-9153-8. S2CID 15131811.
  • Whittaker, E.T.; Watson, G.N. (1927). A Course of Modern Analysis (Edisi 4th). Cambridge, UK: Cambridge University Press. (this edition has been reprinted many times, a 1996 paperback has ISBN 0-521-09189-6.)
  • Wirtinger, W. (1905). "Über eine besondere Dirichletsche Reihe". Journal für die Reine und Angewandte Mathematik (dalam bahasa Jerman). 1905 (129): 214–219. doi:10.1515/crll.1905.129.214. JFM 37.0434.01. S2CID 199545536.
  • Wood, D.C. (June 1992). "The Computation of Polylogarithms. Technical Report 15-92*" (PS). Canterbury, UK: University of Kent Computing Laboratory. Diakses tanggal 2005-11-01.
  • Zagier, D. (1989). "The dilogarithm function in geometry and number theory". Number Theory and Related Topics: papers presented at the Ramanujan Colloquium, Bombay, 1988. Studies in Mathematics. Vol. 12. Bombay: Tata Institute of Fundamental Research and Oxford University Press. hlm. 231–249. ISBN 0-19-562367-3. (also appeared as "The remarkable dilogarithm" in Journal of Mathematical and Physical Sciences 22 (1988), pp. 131–145, and as Chapter I of (Zagier 2007).)
  • Zagier, D. (2007). "The Dilogarithm Function" (PDF). Dalam Cartier, P.E.; et al. (ed.). Frontiers in Number Theory, Physics, and Geometry II – On Conformal Field Theories, Discrete Groups and Renormalization. Berlin: Springer-Verlag. hlm. 3–65. ISBN 978-3-540-30307-7.

Pranala luar

[sunting | sunting sumber]
  • Weisstein, Eric W. "Polylogarithm". MathWorld.
  • Weisstein, Eric W. "Dilogarithm". MathWorld.
  • Algorithms in Analytic Number Theory provides an arbitrary-precision, GMP-based, GPL-licensed implementation.
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Polilogaritma&oldid=27533855"
Kategori:
  • Matematika
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • CS1 sumber berbahasa Prancis (fr)
  • CS1 sumber berbahasa Inggris (en)
  • CS1 sumber berbahasa Jerman (de)

Best Rank
More Recommended Articles