More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Teorema Apollonius - Wikipedia bahasa Indonesia, ensiklopedia bebas
Teorema Apollonius - Wikipedia bahasa Indonesia, ensiklopedia bebas

Teorema Apollonius

  • العربية
  • বাংলা
  • کوردی
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • עברית
  • हिन्दी
  • Հայերեն
  • Italiano
  • 日本語
  • ភាសាខ្មែរ
  • 한국어
  • Монгол
  • Nederlands
  • Polski
  • Piemontèis
  • Português
  • Română
  • Русский
  • Slovenščina
  • Svenska
  • தமிழ்
  • ไทย
  • Türkçe
  • Українська
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Visualisasi dari teorema Apollonius, total luas persegi berwarna merah sama dengan dua kali lipat dari luas persegi panjang biru ditambah dengan luas persegi panjang hijau.

Dalam geometri, teorema Apollonius adalah suatu teorema yang mengaitkan panjang garis berat pada segitiga dengan panjang sisi-sisinya. Teorema ini menyatakan bahwa "jumlah kuadrat dari dua sisi segitiga sama dengan dua kali dari kuadrat setengah sisi ketiga, digabung dengan dua kali dari kuadrat garis berat yang membagi sisi ketiga". Secara lebih formal, untuk suatu segitiga A B C {\displaystyle ABC} {\displaystyle ABC}, jika A D {\displaystyle AD} {\displaystyle AD} merupakan sebuah garis berat, maka | A B | 2 + | A C | 2 = 2 ( | A D | 2 + | B D | 2 ) {\displaystyle |AB|^{2}+|AC|^{2}=2(|AD|^{2}+|BD|^{2})} {\displaystyle |AB|^{2}+|AC|^{2}=2(|AD|^{2}+|BD|^{2})}

teorema Pythagoras adalah kasus khusus dari teorema Apollonius. Dalam ilustrasi ini, luas berwarna hijau akan sama akan sama dengan luas daerah berwarna merah

Teorema ini adalah sebuah kasus khusus dari teorema Stewart. Untuk segitiga sama kaki dengan | A B | = | A C | {\displaystyle |AB|=|AC|} {\displaystyle |AB|=|AC|}, garis berat A D {\displaystyle AD} {\displaystyle AD} akan tegak lurus dengan B C {\displaystyle BC} {\displaystyle BC}, sehingga teorema tereduksi menjadi teorema Pythagoras untuk segitiga A D B {\displaystyle ADB} {\displaystyle ADB} (atau segitiga A D C {\displaystyle ADC} {\displaystyle ADC}). Dari fakta bahwa diagonal-diagonal jajar genjang membagi satu sama lain, teorema Apollonius setara dengan hukum jajar genjang.

Teorema ini dinamai dari nama seorang matematikawan Yunani, Apollonius dari Perga.

Bukti

[sunting | sunting sumber]
Bukti teorema Apollonius

Teorema Apollonius dapat dibuktikan sebagai sebuah kasus khusus dari teorema Stewart, atau dapat dibuktikan menggunakan vektor (lihat hukum jajaran genjang). Berikut ini adalah bukti dengan menggunakan hukum kosinus.[1]

Misalkan segitiga memiliki sisi a , b , c {\displaystyle a,b,c} {\displaystyle a,b,c}, dengan sebuah garis berat d {\displaystyle d} {\displaystyle d} digambar ke sisi a {\displaystyle a} {\displaystyle a}. Misalkan m {\displaystyle m} {\displaystyle m} menjadi panjang dari segmen a {\displaystyle a} {\displaystyle a} yang dibentuk oleh garis berat, jadi besar m {\displaystyle m} {\displaystyle m} adalah setengah dari a {\displaystyle a} {\displaystyle a}. Misalkan pula sudut dibentuk di antara a {\displaystyle a} {\displaystyle a} dan d {\displaystyle d} {\displaystyle d} adalah θ {\displaystyle \theta } {\displaystyle \theta } dan θ ′ {\displaystyle \theta '} {\displaystyle \theta '}, dengan θ {\displaystyle \theta } {\displaystyle \theta } menghadap ke sisi b {\displaystyle b} {\displaystyle b} dan θ ′ {\displaystyle \theta '} {\displaystyle \theta '} menghadap ke sisi c {\displaystyle c} {\displaystyle c}. Sudut θ ′ {\displaystyle \theta '} {\displaystyle \theta '} adalah sudut penggenap dari θ {\displaystyle \theta } {\displaystyle \theta }, (yakni, θ + θ ′ = 180 ∘ {\displaystyle \theta +\theta '=180^{\circ }} {\displaystyle \theta +\theta '=180^{\circ }}) sehingga cos ⁡ θ ′ = − cos ⁡ θ {\displaystyle \cos \theta '=-\cos \theta } {\displaystyle \cos \theta '=-\cos \theta }. Hukum kosinus untuk θ {\displaystyle \theta } {\displaystyle \theta } dan θ ′ {\displaystyle \theta '} {\displaystyle \theta '} menyatakan bahwa

b 2 = m 2 + d 2 − 2 d m cos ⁡ θ c 2 = m 2 + d 2 − 2 d m cos ⁡ θ ′ = m 2 + d 2 + 2 d m cos ⁡ θ {\displaystyle {\begin{aligned}b^{2}&=m^{2}+d^{2}-2dm\cos \theta \\c^{2}&=m^{2}+d^{2}-2dm\cos \theta '\\&=m^{2}+d^{2}+2dm\cos \theta \,\end{aligned}}} {\displaystyle {\begin{aligned}b^{2}&=m^{2}+d^{2}-2dm\cos \theta \\c^{2}&=m^{2}+d^{2}-2dm\cos \theta '\\&=m^{2}+d^{2}+2dm\cos \theta \,\end{aligned}}}

Menggabungkan persamaan yang ke pertama dan yang ketiga akan menghasilkan

b 2 + c 2 = 2 ( m 2 + d 2 ) {\displaystyle b^{2}+c^{2}=2(m^{2}+d^{2})} {\displaystyle b^{2}+c^{2}=2(m^{2}+d^{2})}

yakni teorema Apollonius itu sendiri.

Referensi

[sunting | sunting sumber]
  1. ^ Godfrey, Charles; Siddons, Arthur Warry (1908). Modern Geometry. University Press. hlm. 20.

Pranala luar

[sunting | sunting sumber]
  • Apollonius Theorem di PlanetMath.
  • David B. Surowski: Advanced High-School Mathematics. hlm. 27
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Teorema_Apollonius&oldid=26186391"
Kategori:
  • Artikel yang memuat pembuktian
  • Geometri Euklides
  • Teorema mengenai segitiga
Kategori tersembunyi:
  • Pages using the JsonConfig extension

Best Rank
More Recommended Articles