More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Analisis riil - Wikipedia bahasa Indonesia, ensiklopedia bebas
Analisis riil - Wikipedia bahasa Indonesia, ensiklopedia bebas

Analisis riil

  • العربية
  • Asturianu
  • Башҡортса
  • Български
  • বাংলা
  • Català
  • کوردی
  • Чӑвашла
  • Cymraeg
  • Ελληνικά
  • English
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Ido
  • 日本語
  • ქართული
  • 한국어
  • മലയാളം
  • Polski
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenčina
  • Српски / srpski
  • Svenska
  • ไทย
  • Türkçe
  • Українська
  • Tiếng Việt
  • ייִדיש
  • 中文
  • 粵語
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
(Dialihkan dari Analisis real)

Analisis riil atau analisis real (bahasa Inggris: real analysis), atau biasanya disebut teori fungsi variabel riil atau teori fungsi peubah riil merupakan cabang dari analisis matematika yang membahas himpunan bilangan riil, fungsi riil, serta barisan dan deret bilangan riil.[1] Singkatnya, analisis riil adalah cabang analisis matematis yang berkaitan dengan bilangan riil dan fungsi bernilai riil dari variabel riil.[2][3] Analisis riil dapat dianggap sebagai kalkulus yang lebih mendalam, dan juga pembahasan secara lebih mendalam mengenai konsep barisan dan limit, kekontinuan, turunan, integral, dan barisan dari fungsi tersebut.

Penjelasan analisis riil pada buku-buku pelajaran tingkat lanjut biasanya dimulai dengan pembuktian sederhana mengenai teori dasar himpunan, pendefinisian konsep-konsep fungsi yang jelas, dan pengenalan kepada bilangan asli dan pentingnya teknik pembuktian menggunakan induksi matematika. Lalu dilanjutkan dengan pengenalan bilangan riil baik secara aksioma, ataupun melalui pembentukan dengan barisan Cauchy, ataupun potongan Dedekind pada bilangan rasional. Hasil yang mendasar kemudian dapat diperoleh, yang terpenting adalah sifat-sifat dari nilai mutlak seperti pertidaksamaan segitiga dan pertidaksamaan Bernoulli..

Konsep analisis riil

[sunting | sunting sumber]

Bilangan riil

[sunting | sunting sumber]
Lihat pula: Bilangan riil
Himpunan bilangan riil

Bilangan riil atau bilangan real (dinotasikan R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} } sebagai himpunan bilangan riil) merupakan bilangan yang mencakup bilangan irasional dan bilangan rasional. Bilangan riil dapat kita pandangi sebagai label dalam titik-titik di sepanjang garis horizontal sehingga angka-angkanya dapat mengukur jarak ke kiri dan ke kanan.[4] Himpunan bilangan riil dapat dituliskan sebagai

N ⊂ Z ⊂ Q ⊂ R {\displaystyle \mathbb {N} \subset \mathbb {Z} \subset \mathbb {Q} \subset \mathbb {R} } {\displaystyle \mathbb {N} \subset \mathbb {Z} \subset \mathbb {Q} \subset \mathbb {R} }.
  • Himpunan bilangan riil ('"`UNIQ--postMath-00000003-QINU`"') terdiri dari bilangan asli ('"`UNIQ--postMath-00000004-QINU`"'), bilangan bulat ('"`UNIQ--postMath-00000005-QINU`"'), dan bilangan rasional ('"`UNIQ--postMath-00000006-QINU`"').
    Himpunan bilangan riil ( R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} }) terdiri dari bilangan asli ( N {\displaystyle \mathbb {N} } {\displaystyle \mathbb {N} }), bilangan bulat ( Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} }), dan bilangan rasional ( Q {\displaystyle \mathbb {Q} } {\displaystyle \mathbb {Q} }).
  • Ilustrasi bilangan riil dengan titik-titik yang dilabeli angka-angka pada garis horizontal.[5]
    Ilustrasi bilangan riil dengan titik-titik yang dilabeli angka-angka pada garis horizontal.[5]

Limit

[sunting | sunting sumber]
Lihat pula: Limit
Ilustrasi mengenai definisi limit (ε,δ).

Limit merupakan konsep yang menjelaskan ketika suatu masukan atau indeks mendekati suatu nilai.[6] Definisi maupun sifat-sifatnya dapat dibuktikan dengan menggunakan definisi limit (ε,δ).

Barisan dan deret

[sunting | sunting sumber]
Lihat pula: Barisan

Konsep kekonvergenan, sebagai dasar analisis, diperkenalkan melalui limit dan barisan. Beberapa kaidah yang mengatur proses pelimitan dapat diturunkan, dan beberapa limit dapat dihitung, serta deret takhingga, yang merupakan barisan yang khusus juga dipelajari. Deret pangkat digunakan untuk mendefinisikan dengan jelas beberapa fungsi yang penting, seperti fungsi eksponensial dan fungsi-fungsi trigonometri. Beberapa tipe penting dari subhimpunan bilangan riil, seperi himpunan-himpunan terbuka, himpunan-himpunan tertutup, himpunan-himpunan kompak, dan sifat-sifatnya dijelaskan kemudian.

Kekontinuan

[sunting | sunting sumber]
Lihat pula: Fungsi kontinu

Konsep mengenai kekontinuan dapat dijelaskan menggunakan limit. Penambahan, perkalian, komposisi, hasil kali dan haslil bagi dari fungsi-fungsi yang kontinu adalah fungsi yang kontinu juga, dan teorema nilai tengah yang penting juga terbukti.

Pada pencapaian ini, adalah sangat berguna untuk mempelajari ide dari kekontinuan dan kekonvergenan dengan lebih abstrak, agar kemudian dapat memperhitungkan ruang dari fungsi-fungsi. Ini dapat dilakukan dalam topologi himpunan titik dan menggunakan ruang metrik. Konsep-konsep seperti kekompakan, kelengkapan, ketersambungan, kekontinuan yang seragam, keterpisahan, peta Lipschitz, peta kontraktif, dapat didefinisikan dan diperiksa.

Turunan

[sunting | sunting sumber]
Lihat pula: Turunan
Ilustrasi mengenai penerapan turunan.

Turunan adalah konsep yang menjelaskan bagaimana perilaku fungsi berubah seiring perubahan nilai masukan. Ide mengenai turunan mungkin dapat diperkenalkan sebagai suatu proses pelimitan tertentu, dan hukum-hukum turunan yang umum dari kalkulus dapat dijelaskan dengan lebih terperinci.

Integral Riemann

[sunting | sunting sumber]
Lihat pula: Integral Riemann

Integral Riemann, dinamai dari Bernhard Riemann, merupakan integral yang didefinisikan dalam bentuk jumlah fungsi Riemann terhadap label dari suatu interval.

Lihat pula

[sunting | sunting sumber]
  • Analisis kompleks
  • Daftar topik analisis riil

Referensi

[sunting | sunting sumber]
  1. ^ Tao, Terence (2003). "Lecture notes for MATH 131AH" (PDF). Course Website for MATH 131AH, Department of Mathematics, UCLA.
  2. ^ Rudin, Walter (1976). Principles of Mathematical Analysis. Walter Rudin Student Series in Advanced Mathematics (Edisi 3rd). McGraw–Hill. ISBN 978-0-07-054235-8.
  3. ^ Abbott, Stephen (2001). Understanding Analysis. Undergraduate Texts in Mathematics. New York: Springer-Verlag. ISBN 978-0-387-95060-0.
  4. ^ Dale Varberg, Edward Purcell, Steve Rigdon (2006). Kalkulus Edisi Kesembilan, Jilid 1. hlm. 1. (Penerjemah: I Nyoman Susila, Ph. D, Penerbit Erlangga)
  5. ^ Dale Varberg, Edward Purcell, Steve Rigdon (2006). Kalkulus Edisi Kesembilan. hlm. 2. (Penerjemah: I Nyoman Susila, Ph. D, Penerbit Erlangga)
  6. ^ Stewart, James (2008). Calculus: Early Transcendentals (Edisi 6th). Brooks/Cole. ISBN 978-0-495-01166-8.
  • l
  • b
  • s
Topik utama analisis
  • Kalkulus: Integrasi
  • Diferensiasi
  • Persamaan diferensial (biasa - parsial)
  • Teorema dasar kalkulus
  • Kalkulus variasi
  • Kalkulus vektor
  • Kalkulus tensor
  • Daftar integral
  • Tabel turunan
  • Analisis riil atau Analisis real
  • Analisis kompleks
  • Analisis fungsional
  • Analisis Fourier
  • Analisis harmonik
  • Teori ukuran
  • Teori representasi
  • Fungsi
  • Fungsi kontinu
  • Fungsi khusus
  • Limit
  • Deret
  • Tak hingga
Portal matematika
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Analisis_riil&oldid=26454642"
Kategori:
  • Analisis matematika
Kategori tersembunyi:
  • Pages using the JsonConfig extension

Best Rank
More Recommended Articles