More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Daftar integral dari fungsi hiperbolik - Wikipedia bahasa Indonesia, ensiklopedia bebas
Daftar integral dari fungsi hiperbolik - Wikipedia bahasa Indonesia, ensiklopedia bebas

Daftar integral dari fungsi hiperbolik

  • العربية
  • Bosanski
  • Català
  • Čeština
  • Чӑвашла
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Français
  • Galego
  • Hrvatski
  • Magyar
  • Հայերեն
  • Italiano
  • 日本語
  • ភាសាខ្មែរ
  • 한국어
  • Македонски
  • Nederlands
  • Русский
  • Srpskohrvatski / српскохрватски
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • தமிழ்
  • Türkçe
  • Українська
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Daftar integral (antiderivatif) dari fungsi hiperbolik. Untuk daftar lengkap fungsi integral, lihat Tabel integral.

Dalam semua rumus, konstanta a diasumsikan bukan nol, dan C melambangkan konstanta integrasi.

Integral melibatkan hanya fungsi hiperbolik sinus

[sunting | sunting sumber]

∫ sinh ⁡ a x d x = 1 a cosh ⁡ a x + C {\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C\,} {\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C\,}

∫ sinh 2 ⁡ a x d x = 1 4 a sinh ⁡ 2 a x − x 2 + C {\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C\,} {\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C\,}

∫ sinh n ⁡ a x d x = 1 a n sinh n − 1 ⁡ a x cosh ⁡ a x − n − 1 n ∫ sinh n − 2 ⁡ a x d x (for  n > 0 ) {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{an}}\sinh ^{n-1}ax\cosh ax-{\frac {n-1}{n}}\int \sinh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,} {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{an}}\sinh ^{n-1}ax\cosh ax-{\frac {n-1}{n}}\int \sinh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}

juga: ∫ sinh n ⁡ a x d x = 1 a ( n + 1 ) sinh n + 1 ⁡ a x cosh ⁡ a x − n + 2 n + 1 ∫ sinh n + 2 ⁡ a x d x (for  n < 0 ,  n ≠ − 1 ) {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{a(n+1)}}\sinh ^{n+1}ax\cosh ax-{\frac {n+2}{n+1}}\int \sinh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,} {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{a(n+1)}}\sinh ^{n+1}ax\cosh ax-{\frac {n+2}{n+1}}\int \sinh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}

∫ d x sinh ⁡ a x = 1 a ln ⁡ | tanh ⁡ a x 2 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\,} {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\,}

juga: ∫ d x sinh ⁡ a x = 1 a ln ⁡ | cosh ⁡ a x − 1 sinh ⁡ a x | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\,} {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\,}
∫ d x sinh ⁡ a x = 1 a ln ⁡ | sinh ⁡ a x cosh ⁡ a x + 1 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\,} {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\,}
∫ d x sinh ⁡ a x = 1 2 a ln ⁡ | cosh ⁡ a x − 1 cosh ⁡ a x + 1 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\,} {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\,}

∫ d x sinh n ⁡ a x = − cosh ⁡ a x a ( n − 1 ) sinh n − 1 ⁡ a x − n − 2 n − 1 ∫ d x sinh n − 2 ⁡ a x (for  n ≠ 1 ) {\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,} {\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}

∫ x sinh ⁡ a x d x = 1 a x cosh ⁡ a x − 1 a 2 sinh ⁡ a x + C {\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C\,} {\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C\,}

∫ sinh ⁡ a x sinh ⁡ b x d x = 1 a 2 − b 2 ( a sinh ⁡ b x cosh ⁡ a x − b cosh ⁡ b x sinh ⁡ a x ) + C (for  a 2 ≠ b 2 ) {\displaystyle \int \sinh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh bx\cosh ax-b\cosh bx\sinh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,} {\displaystyle \int \sinh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh bx\cosh ax-b\cosh bx\sinh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}

Integral melibatkan hanya fungsi hiperbolik kosinus

[sunting | sunting sumber]

∫ cosh ⁡ a x d x = 1 a sinh ⁡ a x + C {\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C\,} {\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C\,}

∫ cosh 2 ⁡ a x d x = 1 4 a sinh ⁡ 2 a x + x 2 + C {\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C\,} {\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C\,}

∫ cosh n ⁡ a x d x = 1 a n sinh ⁡ a x cosh n − 1 ⁡ a x + n − 1 n ∫ cosh n − 2 ⁡ a x d x (for  n > 0 ) {\displaystyle \int \cosh ^{n}ax\,dx={\frac {1}{an}}\sinh ax\cosh ^{n-1}ax+{\frac {n-1}{n}}\int \cosh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,} {\displaystyle \int \cosh ^{n}ax\,dx={\frac {1}{an}}\sinh ax\cosh ^{n-1}ax+{\frac {n-1}{n}}\int \cosh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}

juga: ∫ cosh n ⁡ a x d x = − 1 a ( n + 1 ) sinh ⁡ a x cosh n + 1 ⁡ a x + n + 2 n + 1 ∫ cosh n + 2 ⁡ a x d x (for  n < 0 ,  n ≠ − 1 ) {\displaystyle \int \cosh ^{n}ax\,dx=-{\frac {1}{a(n+1)}}\sinh ax\cosh ^{n+1}ax+{\frac {n+2}{n+1}}\int \cosh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,} {\displaystyle \int \cosh ^{n}ax\,dx=-{\frac {1}{a(n+1)}}\sinh ax\cosh ^{n+1}ax+{\frac {n+2}{n+1}}\int \cosh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}

∫ d x cosh ⁡ a x = 2 a arctan ⁡ e a x + C {\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {2}{a}}\arctan e^{ax}+C\,} {\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {2}{a}}\arctan e^{ax}+C\,}

juga: ∫ d x cosh ⁡ a x = 1 a arctan ⁡ ( sinh ⁡ a x ) + C {\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {1}{a}}\arctan(\sinh ax)+C\,} {\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {1}{a}}\arctan(\sinh ax)+C\,}

∫ d x cosh n ⁡ a x = sinh ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + n − 2 n − 1 ∫ d x cosh n − 2 ⁡ a x (for  n ≠ 1 ) {\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,} {\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}

∫ x cosh ⁡ a x d x = 1 a x sinh ⁡ a x − 1 a 2 cosh ⁡ a x + C {\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C\,} {\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C\,}

∫ x 2 cosh ⁡ a x d x = − 2 x cosh ⁡ a x a 2 + ( x 2 a + 2 a 3 ) sinh ⁡ a x + C {\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C\,} {\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C\,}

∫ cosh ⁡ a x cosh ⁡ b x d x = 1 a 2 − b 2 ( a sinh ⁡ a x cosh ⁡ b x − b sinh ⁡ b x cosh ⁡ a x ) + C (for  a 2 ≠ b 2 ) {\displaystyle \int \cosh ax\cosh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\cosh bx-b\sinh bx\cosh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,} {\displaystyle \int \cosh ax\cosh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\cosh bx-b\sinh bx\cosh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}

Integral lain-lain

[sunting | sunting sumber]

Integral fungsi hiperbolik tangen, kotangen, sekan, kosekan

[sunting | sunting sumber]

∫ tanh ⁡ x d x = ln ⁡ cosh ⁡ x + C {\displaystyle \int \tanh x\,dx=\ln \cosh x+C} {\displaystyle \int \tanh x\,dx=\ln \cosh x+C}

∫ tanh 2 ⁡ a x d x = x − tanh ⁡ a x a + C {\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C\,} {\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C\,}

∫ tanh n ⁡ a x d x = − 1 a ( n − 1 ) tanh n − 1 ⁡ a x + ∫ tanh n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,} {\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}

∫ coth ⁡ x d x = ln ⁡ | sinh ⁡ x | + C ,  for  x ≠ 0 {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0} {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0} ∫ coth n ⁡ a x d x = − 1 a ( n − 1 ) coth n − 1 ⁡ a x + ∫ coth n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,} {\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}

∫ sech x d x = arctan ( sinh ⁡ x ) + C {\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C} {\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C} ∫ csch x d x = ln ⁡ | tanh ⁡ x 2 | + C ,  for  x ≠ 0 {\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C,{\text{ for }}x\neq 0} {\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C,{\text{ for }}x\neq 0}

Integral melibatkan fungsi hiperbolik sinus dan kosinus

[sunting | sunting sumber]

∫ cosh ⁡ a x sinh ⁡ b x d x = 1 a 2 − b 2 ( a sinh ⁡ a x sinh ⁡ b x − b cosh ⁡ a x cosh ⁡ b x ) + C (for  a 2 ≠ b 2 ) {\displaystyle \int \cosh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\sinh bx-b\cosh ax\cosh bx)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,} {\displaystyle \int \cosh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\sinh bx-b\cosh ax\cosh bx)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}

∫ cosh n ⁡ a x sinh m ⁡ a x d x = cosh n − 1 ⁡ a x a ( n − m ) sinh m − 1 ⁡ a x + n − 1 n − m ∫ cosh n − 2 ⁡ a x sinh m ⁡ a x d x (for  m ≠ n ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,} {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}

juga: ∫ cosh n ⁡ a x sinh m ⁡ a x d x = − cosh n + 1 ⁡ a x a ( m − 1 ) sinh m − 1 ⁡ a x + n − m + 2 m − 1 ∫ cosh n ⁡ a x sinh m − 2 ⁡ a x d x (for  m ≠ 1 ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,} {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}
∫ cosh n ⁡ a x sinh m ⁡ a x d x = − cosh n − 1 ⁡ a x a ( m − 1 ) sinh m − 1 ⁡ a x + n − 1 m − 1 ∫ cosh n − 2 ⁡ a x sinh m − 2 ⁡ a x d x (for  m ≠ 1 ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,} {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}
∫ sinh m ⁡ a x cosh n ⁡ a x d x = sinh m − 1 ⁡ a x a ( m − n ) cosh n − 1 ⁡ a x + m − 1 n − m ∫ sinh m − 2 ⁡ a x cosh n ⁡ a x d x (for  m ≠ n ) {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,} {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}
∫ sinh m ⁡ a x cosh n ⁡ a x d x = sinh m + 1 ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + m − n + 2 n − 1 ∫ sinh m ⁡ a x cosh n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,} {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫ sinh m ⁡ a x cosh n ⁡ a x d x = − sinh m − 1 ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + m − 1 n − 1 ∫ sinh m − 2 ⁡ a x cosh n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,} {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}

Integral melibatkan fungsi hiperbolik dan trigonometri

[sunting | sunting sumber]

∫ sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C\,} {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C\,}

∫ sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C\,} {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C\,}

∫ cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C\,} {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C\,}

∫ cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C\,} {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C\,}

  • l
  • b
  • s
Daftar integral
Fungsi rasional • Fungsi irrasional • Fungsi trigonometri • Invers trigonometri • Fungsi hiperbolik • Invers hiperbolik • Fungsi eksponensial • Fungsi logaritmik
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Daftar_integral_dari_fungsi_hiperbolik&oldid=24098633"
Kategori:
  • Eksponensial
  • Integral
  • Kalkulus

Best Rank
More Recommended Articles