More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Tabel integral - Wikipedia bahasa Indonesia, ensiklopedia bebas
Tabel integral - Wikipedia bahasa Indonesia, ensiklopedia bebas

Tabel integral

  • Afrikaans
  • العربية
  • Башҡортса
  • Български
  • বাংলা
  • Bosanski
  • Català
  • Čeština
  • Чӑвашла
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • 客家語 / Hak-kâ-ngî
  • हिन्दी
  • Hrvatski
  • Magyar
  • Italiano
  • 日本語
  • ភាសាខ្មែរ
  • 한국어
  • Lombard
  • Lietuvių
  • Latviešu
  • Македонски
  • Nederlands
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Slovenščina
  • Anarâškielâ
  • Српски / srpski
  • தமிழ்
  • Türkçe
  • Татарча / tatarça
  • Українська
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini berisi tentang sebagian besar integral tak tentu dalam kalkulus. Untuk daftar integral tertentu, lihat Daftar integral tertentu.
Kalkulus
  • Teorema dasar
  • Limit fungsi
  • Kontinuitas
  • Teorema nilai purata
  • Teorema Rolle
Diferensial
Definisi
  • Turunan (perumuman)
  • Tabel turunan
  • Diferensial
    • infinitesimal
    • fungsi
    • total
Konsep
  • Notasi untuk pendiferensialan
  • Turunan kedua
  • Turunan ketiga
  • Perubahan variabel
  • Pendiferensialan implisit
  • Laju yang berkaitan
  • Teorema Taylor
Kaidah dan identitas
  • Kaidah penjumlahan dalam pendiferensialan
  • Perkalian
  • Rantai
  • Pangkat
  • Pembagian
  • Rumus Faà di Bruno
Integral
Definisi
  • Antiderivatif
  • Integral (takwajar)
  • Integral Riemann
  • Integrasi Lebesgue
  • Integrasi kontur
  • Tabel integral
Integrasi secara
  • parsial
  • cakram
  • kulit tabung
  • substitusi (trigonometri)
  • pecahan parsial
  • Urutan
  • Rumus reduksi
Deret
  • geometri (aritmetika-geometrik)
  • harmonik
  • selang-seling
  • pangkat
  • binomial
  • Taylor
Uji kekonvergenan
  • uji suku
  • rasio
  • akar
  • integral
  • perbandingan langsung

  • perbandingan limit
  • deret selang-seling
  • kondensasi Cauchy
  • Dirichlet
  • Abel
Vektor
  • Gradien
  • Divergence
  • Keikalan
  • Laplace
  • berarah
  • identitas
Teorema
  • Kedivergenan
  • Gradien
  • Green
  • Stokes
Multivariabel
Formalisme
  • matriks
  • tensor
  • eksterior
  • geometrik
Definisi
  • Turunan parsial
  • Integral lipat
  • Integral garis
  • Permukaan integral
  • integral volume
  • Jacobi
  • Hesse
Khusus
  • fraksional
  • Malliavin
  • stokastik
  • variasi
  • l
  • b
  • s

Pengintegralan atau integrasi merupakan operasi dasar dalam kalkulus integral. Operasi lawannya, turunan, mempunyai kaidah yang dapat menurunkan fungsi dengan bentuk yang lebih mudah menjadi fungsi dengan bentuk yang lebih rumit. Sayangnya, integral tidak mempunyai kaidah yang dapat menghitung sebaliknya, sehingga seringkali diperlukan tabel yang memuat kumpulan integral.

Berikut adalah daftar yang memuat integral atau antiturunan yang paling umum dijumpai. Pada daftar di bawah ini, C {\displaystyle C} {\displaystyle C} mengartikan konstanta sembarang.


Daftar integral

[sunting | sunting sumber]

Daftar integral yang lebih detail dapat dilihat pada halaman-halaman berikut

  • Daftar integral dari fungsi rasional
  • Daftar integral dari fungsi irrasional
  • Daftar integral dari fungsi trigonometri
  • Daftar integral dari fungsi trigonometri terbalik
  • Daftar integral dari fungsi hiperbolik
  • Daftar integral dari fungsi hiperbolik terbalik
  • Daftar integral dari fungsi eksponensial
  • Daftar integral dari fungsi logaritmik
  • Daftar integral dari fungsi Gaussian


Aturan integrasi dari fungsi-fungsi umum

[sunting | sunting sumber]
  1. ∫ a f ( x ) d x = a ∫ f ( x ) d x ( a  konstan) {\displaystyle \int af(x)\,dx=a\int f(x)\,dx\qquad {\mbox{(}}a{\mbox{ konstan)}}\,\!} {\displaystyle \int af(x)\,dx=a\int f(x)\,dx\qquad {\mbox{(}}a{\mbox{ konstan)}}\,\!}
  2. ∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x {\displaystyle \int [f(x)+g(x)]\,dx=\int f(x)\,dx+\int g(x)\,dx} {\displaystyle \int [f(x)+g(x)]\,dx=\int f(x)\,dx+\int g(x)\,dx}
  3. ∫ f ( x ) g ( x ) d x = f ( x ) ∫ g ( x ) d x − ∫ [ f ′ ( x ) ( ∫ g ( x ) d x ) ] d x {\displaystyle \int f(x)g(x)\,dx=f(x)\int g(x)\,dx-\int \left[f'(x)\left(\int g(x)\,dx\right)\right]\,dx} {\displaystyle \int f(x)g(x)\,dx=f(x)\int g(x)\,dx-\int \left[f'(x)\left(\int g(x)\,dx\right)\right]\,dx}
  4. ∫ [ f ( x ) ] n f ′ ( x ) d x = [ f ( x ) ] n + 1 n + 1 + C (untuk  n ≠ − 1 ) {\displaystyle \int [f(x)]^{n}f'(x)\,dx={[f(x)]^{n+1} \over n+1}+C\qquad {\mbox{(untuk }}n\neq -1{\mbox{)}}\,\!} {\displaystyle \int [f(x)]^{n}f'(x)\,dx={[f(x)]^{n+1} \over n+1}+C\qquad {\mbox{(untuk }}n\neq -1{\mbox{)}}\,\!}
  5. ∫ f ′ ( x ) f ( x ) d x = ln ⁡ | f ( x ) | + C {\displaystyle \int {f'(x) \over f(x)}\,dx=\ln {\left|f(x)\right|}+C} {\displaystyle \int {f'(x) \over f(x)}\,dx=\ln {\left|f(x)\right|}+C}
  6. ∫ f ′ ( x ) f ( x ) d x = 1 2 [ f ( x ) ] 2 + C {\displaystyle \int {f'(x)f(x)}\,dx={1 \over 2}[f(x)]^{2}+C} {\displaystyle \int {f'(x)f(x)}\,dx={1 \over 2}[f(x)]^{2}+C}

Integral fungsi sederhana

[sunting | sunting sumber]

Konstanta C sering digunakan untuk konstanta sembarang dalam integrasi. Konstanta ini hanya dapat ditentukan jika suatu nilai integral pada beberapa titik sudah diketahui. Jadi, setiap fungsi mempunyai jumlah integral tidak terbatas.

Rumus-rumus berikut hanya menyatakan dalam bentuk lain pernyataan-pernyataan dalam tabel turunan.


Fungsi rasional

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi rasional
∫ d x = x + C {\displaystyle \int \,dx=x+C} {\displaystyle \int \,dx=x+C}
∫ x n d x = x n + 1 n + 1 + C  jika  n ≠ − 1 {\displaystyle \int x^{n}\,dx={\frac {x^{n+1}}{n+1}}+C\qquad {\mbox{ jika }}n\neq -1} {\displaystyle \int x^{n}\,dx={\frac {x^{n+1}}{n+1}}+C\qquad {\mbox{ jika }}n\neq -1}
∫ ( a x + b ) n d x = ( a x + b ) n + 1 a ( n + 1 ) + C  jika  n ≠ − 1 {\displaystyle \int (ax+b)^{n}\,dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\mbox{ jika }}n\neq -1} {\displaystyle \int (ax+b)^{n}\,dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\mbox{ jika }}n\neq -1}
∫ d x x = ln ⁡ | x | + C {\displaystyle \int {dx \over x}=\ln {\left|x\right|}+C} {\displaystyle \int {dx \over x}=\ln {\left|x\right|}+C}
∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C {\displaystyle \int {dx \over {a^{2}+x^{2}}}={1 \over a}\arctan {x \over a}+C} {\displaystyle \int {dx \over {a^{2}+x^{2}}}={1 \over a}\arctan {x \over a}+C}

Fungsi irrasional

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi irrasional
∫ d x a 2 − x 2 = arcsin ⁡ x a + C {\displaystyle \int {dx \over {\sqrt {a^{2}-x^{2}}}}=\arcsin {x \over a}+C} {\displaystyle \int {dx \over {\sqrt {a^{2}-x^{2}}}}=\arcsin {x \over a}+C}
∫ − d x a 2 − x 2 = arccos ⁡ x a + C {\displaystyle \int {-dx \over {\sqrt {a^{2}-x^{2}}}}=\arccos {x \over a}+C} {\displaystyle \int {-dx \over {\sqrt {a^{2}-x^{2}}}}=\arccos {x \over a}+C}
∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C {\displaystyle \int {dx \over a^{2}+x^{2}}={1 \over a}\arctan {x \over a}+C} {\displaystyle \int {dx \over a^{2}+x^{2}}={1 \over a}\arctan {x \over a}+C}
∫ − d x a 2 + x 2 = 1 a arccot ⁡ x a + C {\displaystyle \int {-dx \over a^{2}+x^{2}}={1 \over a}\operatorname {arccot} {x \over a}+C} {\displaystyle \int {-dx \over a^{2}+x^{2}}={1 \over a}\operatorname {arccot} {x \over a}+C}
∫ d x x x 2 − a 2 = 1 a arcsec ⁡ | x | a + C {\displaystyle \int {dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\operatorname {arcsec} {|x| \over a}+C} {\displaystyle \int {dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\operatorname {arcsec} {|x| \over a}+C}
∫ − d x x x 2 − a 2 = 1 a arccsc ⁡ | x | a + C {\displaystyle \int {-dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\operatorname {arccsc} {|x| \over a}+C} {\displaystyle \int {-dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\operatorname {arccsc} {|x| \over a}+C}

Fungsi eksponensial

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi eksponensial
∫ e x d x = e x + C {\displaystyle \int e^{x}\,dx=e^{x}+C} {\displaystyle \int e^{x}\,dx=e^{x}+C}
∫ a x d x = a x ln ⁡ a + C {\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln {a}}}+C} {\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln {a}}}+C}

Fungsi logaritma

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi logaritmik
∫ ln ⁡ x d x = x ln ⁡ x − x + C {\displaystyle \int \ln {x}\,dx=x\ln {x}-x+C} {\displaystyle \int \ln {x}\,dx=x\ln {x}-x+C}
∫ b log ⁡ x d x = x ⋅ b log ⁡ x − x ⋅ b log ⁡ e + C {\displaystyle \int \,^{b}\!\log {x}\,dx=x\cdot \,^{b}\!\log x-x\cdot \,^{b}\!\log e+C} {\displaystyle \int \,^{b}\!\log {x}\,dx=x\cdot \,^{b}\!\log x-x\cdot \,^{b}\!\log e+C}

Fungsi trigonometri

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi trigonometri
∫ sin ⁡ x d x = − cos ⁡ x + C {\displaystyle \int \sin {x}\,dx=-\cos {x}+C} {\displaystyle \int \sin {x}\,dx=-\cos {x}+C}
∫ cos ⁡ x d x = sin ⁡ x + C {\displaystyle \int \cos {x}\,dx=\sin {x}+C} {\displaystyle \int \cos {x}\,dx=\sin {x}+C}
∫ tan ⁡ x d x = ln ⁡ | sec ⁡ x | + C {\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+C} {\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+C}
∫ cot ⁡ x d x = − ln ⁡ | csc ⁡ x | + C {\displaystyle \int \cot {x}\,dx=-\ln {\left|\csc {x}\right|}+C} {\displaystyle \int \cot {x}\,dx=-\ln {\left|\csc {x}\right|}+C}
∫ sec ⁡ x d x = ln ⁡ | sec ⁡ x + tan ⁡ x | + C {\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+C} {\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+C}
∫ csc ⁡ x d x = − ln ⁡ | csc ⁡ x + cot ⁡ x | + C {\displaystyle \int \csc {x}\,dx=-\ln {\left|\csc {x}+\cot {x}\right|}+C} {\displaystyle \int \csc {x}\,dx=-\ln {\left|\csc {x}+\cot {x}\right|}+C}
∫ sec 2 ⁡ x d x = tan ⁡ x + C {\displaystyle \int \sec ^{2}x\,dx=\tan x+C} {\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
∫ csc 2 ⁡ x d x = − cot ⁡ x + C {\displaystyle \int \csc ^{2}x\,dx=-\cot x+C} {\displaystyle \int \csc ^{2}x\,dx=-\cot x+C}
∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C {\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+C} {\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+C}
∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C {\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+C} {\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+C}
∫ sin 2 ⁡ x d x = 1 2 ( x − sin ⁡ x cos ⁡ x ) + C {\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-\sin x\cos x)+C} {\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-\sin x\cos x)+C}
∫ cos 2 ⁡ x d x = 1 2 ( x + sin ⁡ x cos ⁡ x ) + C {\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+\sin x\cos x)+C} {\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+\sin x\cos x)+C}
∫ sec 3 ⁡ x d x = 1 2 sec ⁡ x tan ⁡ x + 1 2 ln ⁡ | sec ⁡ x + tan ⁡ x | + C {\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C} {\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C}
∫ sin n ⁡ x d x = − sin n − 1 ⁡ x cos ⁡ x n + n − 1 n ∫ sin n − 2 ⁡ x d x {\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx} {\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫ cos n ⁡ x d x = cos n − 1 ⁡ x sin ⁡ x n + n − 1 n ∫ cos n − 2 ⁡ x d x {\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx} {\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}

Fungsi trigonometri terbalik

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi trigonometri terbalik
∫ arcsin ⁡ ( x ) d x = x a r c s i n ( x ) + 1 − x 2 + C {\displaystyle \int \arcsin(x)\,dx=x\,arcsin(x)+{\sqrt {1-x^{2}}}+C} {\displaystyle \int \arcsin(x)\,dx=x\,arcsin(x)+{\sqrt {1-x^{2}}}+C}
∫ arccos ⁡ ( x ) d x = x a r c c o s ( x ) − 1 − x 2 + C {\displaystyle \int \arccos(x)\,dx=x\,arccos(x)-{\sqrt {1-x^{2}}}+C} {\displaystyle \int \arccos(x)\,dx=x\,arccos(x)-{\sqrt {1-x^{2}}}+C}
∫ arctan ⁡ x d x = x arctan ⁡ x − 1 2 ln ⁡ | 1 + x 2 | + C {\displaystyle \int \arctan {x}\,dx=x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C} {\displaystyle \int \arctan {x}\,dx=x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
∫ arccot ⁡ x d x = x arccot ⁡ x + 1 2 ln ⁡ | 1 + x 2 | + C {\displaystyle \int \operatorname {arccot} {x}\,dx=x\,\operatorname {arccot} {x}+{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C} {\displaystyle \int \operatorname {arccot} {x}\,dx=x\,\operatorname {arccot} {x}+{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
∫ arcsec ⁡ ( x ) d x = x arcsec ⁡ ( x ) − ln ⁡ ( | x | + x 2 − 1 ) + C = x arcsec ⁡ ( x ) − arcosh ⁡ | x | + C {\displaystyle \int \operatorname {arcsec}(x)\,dx=x\operatorname {arcsec}(x)\,-\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arcsec}(x)-\operatorname {arcosh} |x|+C} {\displaystyle \int \operatorname {arcsec}(x)\,dx=x\operatorname {arcsec}(x)\,-\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arcsec}(x)-\operatorname {arcosh} |x|+C}
∫ arccsc ⁡ ( x ) d x = x arccsc ⁡ ( x ) + ln ⁡ ( | x | + x 2 − 1 ) + C = x arccsc ⁡ ( x ) + arcosh ⁡ | x | + C {\displaystyle \int \operatorname {arccsc}(x)\,dx=x\operatorname {arccsc}(x)\,+\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arccsc}(x)+\operatorname {arcosh} |x|+C} {\displaystyle \int \operatorname {arccsc}(x)\,dx=x\operatorname {arccsc}(x)\,+\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arccsc}(x)+\operatorname {arcosh} |x|+C}

Fungsi hiperbolik

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi hiperbolik
∫ sinh ⁡ x d x = cosh ⁡ x + C {\displaystyle \int \sinh x\,dx=\cosh x+C} {\displaystyle \int \sinh x\,dx=\cosh x+C}
∫ cosh ⁡ x d x = sinh ⁡ x + C {\displaystyle \int \cosh x\,dx=\sinh x+C} {\displaystyle \int \cosh x\,dx=\sinh x+C}
∫ tanh ⁡ x d x = ln ⁡ | cosh ⁡ x | + C {\displaystyle \int \tanh x\,dx=\ln |\cosh x|+C} {\displaystyle \int \tanh x\,dx=\ln |\cosh x|+C}
∫ coth ⁡ x d x = ln ⁡ | sinh ⁡ x | + C {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C} {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C}
∫ sech x d x = arctan ⁡ ( sinh ⁡ x ) + C {\displaystyle \int {\mbox{sech}}\,x\,dx=\arctan(\sinh x)+C} {\displaystyle \int {\mbox{sech}}\,x\,dx=\arctan(\sinh x)+C}
∫ csch x d x = ln ⁡ | tanh ⁡ x 2 | + C {\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+C} {\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+C}

Fungsi hiperbolik terbalik

[sunting | sunting sumber]
Artikel utama: Daftar integral dari fungsi hiperbolik terbalik
∫ arsinh ⁡ x d x = x arsinh ⁡ x − x 2 + 1 + C {\displaystyle \int \operatorname {arsinh} x\,dx=x\operatorname {arsinh} x-{\sqrt {x^{2}+1}}+C} {\displaystyle \int \operatorname {arsinh} x\,dx=x\operatorname {arsinh} x-{\sqrt {x^{2}+1}}+C}
∫ arcosh ⁡ x d x = x arcosh ⁡ x − x 2 − 1 + C {\displaystyle \int \operatorname {arcosh} x\,dx=x\operatorname {arcosh} x-{\sqrt {x^{2}-1}}+C} {\displaystyle \int \operatorname {arcosh} x\,dx=x\operatorname {arcosh} x-{\sqrt {x^{2}-1}}+C}
∫ artanh ⁡ x d x = x artanh ⁡ x + 1 2 log ⁡ ( 1 − x 2 ) + C {\displaystyle \int \operatorname {artanh} x\,dx=x\operatorname {artanh} x+{\frac {1}{2}}\log {(1-x^{2})}+C} {\displaystyle \int \operatorname {artanh} x\,dx=x\operatorname {artanh} x+{\frac {1}{2}}\log {(1-x^{2})}+C}
∫ arcoth d x = x arcoth ⁡ x + 1 2 log ⁡ ( x 2 − 1 ) + C {\displaystyle \int \operatorname {arcoth} \,dx=x\operatorname {arcoth} x+{\frac {1}{2}}\log {(x^{2}-1)}+C} {\displaystyle \int \operatorname {arcoth} \,dx=x\operatorname {arcoth} x+{\frac {1}{2}}\log {(x^{2}-1)}+C}
∫ arsech x d x = x arsech ⁡ x − arctan ⁡ ( x x − 1 1 − x 1 + x ) + C {\displaystyle \int \operatorname {arsech} \,x\,dx=x\operatorname {arsech} x-\arctan {\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+C} {\displaystyle \int \operatorname {arsech} \,x\,dx=x\operatorname {arsech} x-\arctan {\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+C}
∫ arcsch x d x = x arcsch ⁡ x + log ⁡ [ x ( 1 + 1 x 2 + 1 ) ] + C {\displaystyle \int \operatorname {arcsch} \,x\,dx=x\operatorname {arcsch} x+\log {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+C} {\displaystyle \int \operatorname {arcsch} \,x\,dx=x\operatorname {arcsch} x+\log {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+C}

Integral lain, yaitu "Sophomore's dream", diyakini berasal dari Johann Bernoulli. Integral tersebut di antaranya

∫ 0 1 x − x d x = ∑ n = 1 ∞ n − n ( = 1 , 29128599706266 … ) ∫ 0 1 x x d x = − ∑ n = 1 ∞ ( − n ) − n ( = 0 , 78343051071213 … ) {\displaystyle {\begin{aligned}\int _{0}^{1}x^{-x}\,dx&=\sum _{n=1}^{\infty }n^{-n}&&(=1,29128599706266\dots )\\\int _{0}^{1}x^{x}\,dx&=-\sum _{n=1}^{\infty }(-n)^{-n}&&(=0,78343051071213\dots )\end{aligned}}} {\displaystyle {\begin{aligned}\int _{0}^{1}x^{-x}\,dx&=\sum _{n=1}^{\infty }n^{-n}&&(=1,29128599706266\dots )\\\int _{0}^{1}x^{x}\,dx&=-\sum _{n=1}^{\infty }(-n)^{-n}&&(=0,78343051071213\dots )\end{aligned}}}

Lihat pula

[sunting | sunting sumber]
  • Integral
  • Kalkulus
  • Fungsi gamma tidak komplit
  • Jumlah tak terbatas
  • Daftar limit
  • Daftar deret matematikal
  • Integrasi simbolik
  • l
  • b
  • s
Daftar integral
Fungsi rasional • Fungsi irrasional • Fungsi trigonometri • Invers trigonometri • Fungsi hiperbolik • Invers hiperbolik • Fungsi eksponensial • Fungsi logaritmik

Referensi

[sunting | sunting sumber]

Pustaka

[sunting | sunting sumber]
  • M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
  • I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Errata. (Several previous editions as well.)
  • A.P. Prudnikov (А.П. Прудников), Yu.A. Brychkov (Ю.А. Брычков), O.I. Marichev (О.И. Маричев). Integrals and Series. First edition (Russian), volume 1–5, Nauka, 1981−1986. First edition (English, translated from the Russian by N.M. Queen), volume 1–5, Gordon & Breach Science Publishers/CRC Press, 1988–1992, ISBN 2-88124-097-6. Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003.
  • Yu.A. Brychkov (Ю.А. Брычков), Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition, Chapman & Hall/CRC Press, 2008, ISBN 1-58488-956-X.
  • Daniel Zwillinger. CRC Standard Mathematical Tables and Formulae, 31st edition. Chapman & Hall/CRC Press, 2002. ISBN 1-58488-291-3. (Many earlier editions as well.)

Sejarah

[sunting | sunting sumber]
  • Meyer Hirsch, Integraltafeln, oder, Sammlung von Integralformeln (Duncker und Humblot, Berlin, 1810)
  • Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln]
  • David Bierens de Haan, Nouvelles Tables d'Intégrales définies (Engels, Leiden, 1862)
  • Benjamin O. Pierce A short table of integrals – revised edition (Ginn & co., Boston, 1899)

Pranala luar

[sunting | sunting sumber]

Tabel integral

[sunting | sunting sumber]
  • Paul's Online Math Notes
  • A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals
  • Math Major: A Table of Integrals Diarsipkan 2012-10-30 di Archive.is
  • O'Brien, Francis J. Jr. "500 Integrals". Derived integrals of exponential and logarithmic functions
  • Rule-based Mathematics Precisely defined indefinite integration rules covering a wide class of integrands
  • Mathar, Richard J. (2012). "Yet another table of integrals". arΧiv:1207.5845. 

Derivasi

[sunting | sunting sumber]
  • V. H. Moll, The Integrals in Gradshteyn and Ryzhik

Layanan daring

[sunting | sunting sumber]
  • Integration examples for Wolfram Alpha

Program open source

[sunting | sunting sumber]
  • wxmaxima gui for Symbolic and numeric resolution of many mathematical problems Diarsipkan 2011-03-20 di Wayback Machine.
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Tabel_integral&oldid=24245108"
Kategori:
  • Daftar matematika
  • Tabel matematika
  • Kalkulus
  • Integral
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • Articles with hatnote templates targeting a nonexistent page
  • Templat webarchive tautan archiveis
  • Templat webarchive tautan wayback
  • Halaman yang menggunakan pranala magis ISBN

Best Rank
More Recommended Articles