More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Daftar integral dari fungsi invers trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas
Daftar integral dari fungsi invers trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas

Daftar integral dari fungsi invers trigonometri

  • العربية
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Français
  • Galego
  • Hrvatski
  • Հայերեն
  • Italiano
  • 日本語
  • ភាសាខ្មែរ
  • 한국어
  • Македонски
  • Nederlands
  • Norsk bokmål
  • Русский
  • Srpskohrvatski / српскохрватски
  • Slovenščina
  • Shqip
  • Српски / srpski
  • தமிழ்
  • Türkçe
  • Українська
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Daftar integral (antiderivatif) dari ekspresi yang melibatkan fungsi invers trigonometri. Untuk daftar lengkap rumus integral, lihat tabel integral.

  • Fungsi invers (= "fungsi kebalikan") trigonometri juga dikenal sebagai "fungsi arc" ("arc functions").
  • C digunakan untuk melambangkan konstanta integrasi arbitrari yang hanya dapat ditentukan jika nilai integral pada satu titik tertentu telah diketahui. Jadi setiap fungsi mempunyai antiderivatif yang tak terhingga banyaknya.
  • Ada tiga notasi umum untuk fungsi-fungsi invers trigonometri. Fungsi arcsinus, misalnya, dapat ditulis sebagai sin−1, asin, atau, pada halaman ini, arcsin.
  • Untuk setiap rumus integrasi fungsi invers trigonometri di bawah ini ada rumus yang bersangkutan dalam daftar integral dari fungsi invers hiperbolik.

Rumus integrasi fungsi arcsinus

[sunting | sunting sumber]
∫ arcsin ⁡ ( x ) d x = x arcsin ⁡ ( x ) + 1 − x 2 + C {\displaystyle \int \arcsin(x)\,dx=x\arcsin(x)+{\sqrt {1-x^{2}}}+C} {\displaystyle \int \arcsin(x)\,dx=x\arcsin(x)+{\sqrt {1-x^{2}}}+C}
∫ arcsin ⁡ ( a x ) d x = x arcsin ⁡ ( a x ) + 1 − a 2 x 2 a + C {\displaystyle \int \arcsin(a\,x)\,dx=x\arcsin(a\,x)+{\frac {\sqrt {1-a^{2}\,x^{2}}}{a}}+C} {\displaystyle \int \arcsin(a\,x)\,dx=x\arcsin(a\,x)+{\frac {\sqrt {1-a^{2}\,x^{2}}}{a}}+C}
∫ x arcsin ⁡ ( a x ) d x = x 2 arcsin ⁡ ( a x ) 2 − arcsin ⁡ ( a x ) 4 a 2 + x 1 − a 2 x 2 4 a + C {\displaystyle \int x\arcsin(a\,x)\,dx={\frac {x^{2}\arcsin(a\,x)}{2}}-{\frac {\arcsin(a\,x)}{4\,a^{2}}}+{\frac {x{\sqrt {1-a^{2}\,x^{2}}}}{4\,a}}+C} {\displaystyle \int x\arcsin(a\,x)\,dx={\frac {x^{2}\arcsin(a\,x)}{2}}-{\frac {\arcsin(a\,x)}{4\,a^{2}}}+{\frac {x{\sqrt {1-a^{2}\,x^{2}}}}{4\,a}}+C}
∫ x 2 arcsin ⁡ ( a x ) d x = x 3 arcsin ⁡ ( a x ) 3 + ( a 2 x 2 + 2 ) 1 − a 2 x 2 9 a 3 + C {\displaystyle \int x^{2}\arcsin(a\,x)\,dx={\frac {x^{3}\arcsin(a\,x)}{3}}+{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {1-a^{2}\,x^{2}}}}{9\,a^{3}}}+C} {\displaystyle \int x^{2}\arcsin(a\,x)\,dx={\frac {x^{3}\arcsin(a\,x)}{3}}+{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {1-a^{2}\,x^{2}}}}{9\,a^{3}}}+C}
∫ x m arcsin ⁡ ( a x ) d x = x m + 1 arcsin ⁡ ( a x ) m + 1 − a m + 1 ∫ x m + 1 1 − a 2 x 2 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\arcsin(a\,x)\,dx={\frac {x^{m+1}\arcsin(a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}\,x^{2}}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\arcsin(a\,x)\,dx={\frac {x^{m+1}\arcsin(a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}\,x^{2}}}}\,dx\quad (m\neq -1)}
∫ arcsin ⁡ ( a x ) 2 d x = − 2 x + x arcsin ⁡ ( a x ) 2 + 2 1 − a 2 x 2 arcsin ⁡ ( a x ) a + C {\displaystyle \int \arcsin(a\,x)^{2}\,dx=-2\,x+x\arcsin(a\,x)^{2}+{\frac {2{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)}{a}}+C} {\displaystyle \int \arcsin(a\,x)^{2}\,dx=-2\,x+x\arcsin(a\,x)^{2}+{\frac {2{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)}{a}}+C}
∫ arcsin ⁡ ( a x ) n d x = x arcsin ⁡ ( a x ) n + n 1 − a 2 x 2 arcsin ⁡ ( a x ) n − 1 a − n ( n − 1 ) ∫ arcsin ⁡ ( a x ) n − 2 d x {\displaystyle \int \arcsin(a\,x)^{n}\,dx=x\arcsin(a\,x)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)^{n-1}}{a}}\,-\,n\,(n-1)\int \arcsin(a\,x)^{n-2}\,dx} {\displaystyle \int \arcsin(a\,x)^{n}\,dx=x\arcsin(a\,x)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)^{n-1}}{a}}\,-\,n\,(n-1)\int \arcsin(a\,x)^{n-2}\,dx}
∫ arcsin ⁡ ( a x ) n d x = x arcsin ⁡ ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + 1 − a 2 x 2 arcsin ⁡ ( a x ) n + 1 a ( n + 1 ) − 1 ( n + 1 ) ( n + 2 ) ∫ arcsin ⁡ ( a x ) n + 2 d x ( n ≠ − 1 , − 2 ) {\displaystyle \int \arcsin(a\,x)^{n}\,dx={\frac {x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arcsin(a\,x)^{n+2}\,dx\quad (n\neq -1,-2)} {\displaystyle \int \arcsin(a\,x)^{n}\,dx={\frac {x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arcsin(a\,x)^{n+2}\,dx\quad (n\neq -1,-2)}

Rumus integrasi fungsi arckosinus

[sunting | sunting sumber]
∫ arccos ⁡ ( x ) d x = x arccos ⁡ ( x ) − 1 − x 2 + C {\displaystyle \int \arccos(x)\,dx=x\arccos(x)-{\sqrt {1-x^{2}}}+C} {\displaystyle \int \arccos(x)\,dx=x\arccos(x)-{\sqrt {1-x^{2}}}+C}
∫ arccos ⁡ ( a x ) d x = x arccos ⁡ ( a x ) − 1 − a 2 x 2 a + C {\displaystyle \int \arccos(a\,x)\,dx=x\arccos(a\,x)-{\frac {\sqrt {1-a^{2}\,x^{2}}}{a}}+C} {\displaystyle \int \arccos(a\,x)\,dx=x\arccos(a\,x)-{\frac {\sqrt {1-a^{2}\,x^{2}}}{a}}+C}
∫ x arccos ⁡ ( a x ) d x = x 2 arccos ⁡ ( a x ) 2 − arccos ⁡ ( a x ) 4 a 2 − x 1 − a 2 x 2 4 a + C {\displaystyle \int x\arccos(a\,x)\,dx={\frac {x^{2}\arccos(a\,x)}{2}}-{\frac {\arccos(a\,x)}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}\,x^{2}}}}{4\,a}}+C} {\displaystyle \int x\arccos(a\,x)\,dx={\frac {x^{2}\arccos(a\,x)}{2}}-{\frac {\arccos(a\,x)}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}\,x^{2}}}}{4\,a}}+C}
∫ x 2 arccos ⁡ ( a x ) d x = x 3 arccos ⁡ ( a x ) 3 − ( a 2 x 2 + 2 ) 1 − a 2 x 2 9 a 3 + C {\displaystyle \int x^{2}\arccos(a\,x)\,dx={\frac {x^{3}\arccos(a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {1-a^{2}\,x^{2}}}}{9\,a^{3}}}+C} {\displaystyle \int x^{2}\arccos(a\,x)\,dx={\frac {x^{3}\arccos(a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {1-a^{2}\,x^{2}}}}{9\,a^{3}}}+C}
∫ x m arccos ⁡ ( a x ) d x = x m + 1 arccos ⁡ ( a x ) m + 1 + a m + 1 ∫ x m + 1 1 − a 2 x 2 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\arccos(a\,x)\,dx={\frac {x^{m+1}\arccos(a\,x)}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}\,x^{2}}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\arccos(a\,x)\,dx={\frac {x^{m+1}\arccos(a\,x)}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}\,x^{2}}}}\,dx\quad (m\neq -1)}
∫ arccos ⁡ ( a x ) 2 d x = − 2 x + x arccos ⁡ ( a x ) 2 − 2 1 − a 2 x 2 arccos ⁡ ( a x ) a + C {\displaystyle \int \arccos(a\,x)^{2}\,dx=-2\,x+x\arccos(a\,x)^{2}-{\frac {2{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)}{a}}+C} {\displaystyle \int \arccos(a\,x)^{2}\,dx=-2\,x+x\arccos(a\,x)^{2}-{\frac {2{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)}{a}}+C}
∫ arccos ⁡ ( a x ) n d x = x arccos ⁡ ( a x ) n − n 1 − a 2 x 2 arccos ⁡ ( a x ) n − 1 a − n ( n − 1 ) ∫ arccos ⁡ ( a x ) n − 2 d x {\displaystyle \int \arccos(a\,x)^{n}\,dx=x\arccos(a\,x)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)^{n-1}}{a}}\,-\,n\,(n-1)\int \arccos(a\,x)^{n-2}\,dx} {\displaystyle \int \arccos(a\,x)^{n}\,dx=x\arccos(a\,x)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)^{n-1}}{a}}\,-\,n\,(n-1)\int \arccos(a\,x)^{n-2}\,dx}
∫ arccos ⁡ ( a x ) n d x = x arccos ⁡ ( a x ) n + 2 ( n + 1 ) ( n + 2 ) − 1 − a 2 x 2 arccos ⁡ ( a x ) n + 1 a ( n + 1 ) − 1 ( n + 1 ) ( n + 2 ) ∫ arccos ⁡ ( a x ) n + 2 d x ( n ≠ − 1 , − 2 ) {\displaystyle \int \arccos(a\,x)^{n}\,dx={\frac {x\arccos(a\,x)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arccos(a\,x)^{n+2}\,dx\quad (n\neq -1,-2)} {\displaystyle \int \arccos(a\,x)^{n}\,dx={\frac {x\arccos(a\,x)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arccos(a\,x)^{n+2}\,dx\quad (n\neq -1,-2)}

Rumus integrasi fungsi arctangen

[sunting | sunting sumber]
∫ arctan ⁡ ( x ) d x = x arctan ⁡ ( x ) − ln ⁡ ( x 2 + 1 ) 2 + C {\displaystyle \int \arctan(x)\,dx=x\arctan(x)-{\frac {\ln \left(x^{2}+1\right)}{2}}+C} {\displaystyle \int \arctan(x)\,dx=x\arctan(x)-{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
∫ arctan ⁡ ( a x ) d x = x arctan ⁡ ( a x ) − ln ⁡ ( a 2 x 2 + 1 ) 2 a + C {\displaystyle \int \arctan(a\,x)\,dx=x\arctan(a\,x)-{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{2\,a}}+C} {\displaystyle \int \arctan(a\,x)\,dx=x\arctan(a\,x)-{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{2\,a}}+C}
∫ x arctan ⁡ ( a x ) d x = x 2 arctan ⁡ ( a x ) 2 + arctan ⁡ ( a x ) 2 a 2 − x 2 a + C {\displaystyle \int x\arctan(a\,x)\,dx={\frac {x^{2}\arctan(a\,x)}{2}}+{\frac {\arctan(a\,x)}{2\,a^{2}}}-{\frac {x}{2\,a}}+C} {\displaystyle \int x\arctan(a\,x)\,dx={\frac {x^{2}\arctan(a\,x)}{2}}+{\frac {\arctan(a\,x)}{2\,a^{2}}}-{\frac {x}{2\,a}}+C}
∫ x 2 arctan ⁡ ( a x ) d x = x 3 arctan ⁡ ( a x ) 3 + ln ⁡ ( a 2 x 2 + 1 ) 6 a 3 − x 2 6 a + C {\displaystyle \int x^{2}\arctan(a\,x)\,dx={\frac {x^{3}\arctan(a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C} {\displaystyle \int x^{2}\arctan(a\,x)\,dx={\frac {x^{3}\arctan(a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C}
∫ x m arctan ⁡ ( a x ) d x = x m + 1 arctan ⁡ ( a x ) m + 1 − a m + 1 ∫ x m + 1 a 2 x 2 + 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\arctan(a\,x)\,dx={\frac {x^{m+1}\arctan(a\,x)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}+1}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\arctan(a\,x)\,dx={\frac {x^{m+1}\arctan(a\,x)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}+1}}\,dx\quad (m\neq -1)}

Rumus integrasi fungsi arckotangen

[sunting | sunting sumber]
∫ arccot ⁡ ( x ) d x = x arccot ⁡ ( x ) + ln ⁡ ( x 2 + 1 ) 2 + C {\displaystyle \int \operatorname {arccot}(x)\,dx=x\operatorname {arccot}(x)+{\frac {\ln \left(x^{2}+1\right)}{2}}+C} {\displaystyle \int \operatorname {arccot}(x)\,dx=x\operatorname {arccot}(x)+{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
∫ arccot ⁡ ( a x ) d x = x arccot ⁡ ( a x ) + ln ⁡ ( a 2 x 2 + 1 ) 2 a + C {\displaystyle \int \operatorname {arccot}(a\,x)\,dx=x\operatorname {arccot}(a\,x)+{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{2\,a}}+C} {\displaystyle \int \operatorname {arccot}(a\,x)\,dx=x\operatorname {arccot}(a\,x)+{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{2\,a}}+C}
∫ x arccot ⁡ ( a x ) d x = x 2 arccot ⁡ ( a x ) 2 + arccot ⁡ ( a x ) 2 a 2 + x 2 a + C {\displaystyle \int x\operatorname {arccot}(a\,x)\,dx={\frac {x^{2}\operatorname {arccot}(a\,x)}{2}}+{\frac {\operatorname {arccot}(a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C} {\displaystyle \int x\operatorname {arccot}(a\,x)\,dx={\frac {x^{2}\operatorname {arccot}(a\,x)}{2}}+{\frac {\operatorname {arccot}(a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
∫ x 2 arccot ⁡ ( a x ) d x = x 3 arccot ⁡ ( a x ) 3 − ln ⁡ ( a 2 x 2 + 1 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\operatorname {arccot}(a\,x)\,dx={\frac {x^{3}\operatorname {arccot}(a\,x)}{3}}-{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C} {\displaystyle \int x^{2}\operatorname {arccot}(a\,x)\,dx={\frac {x^{3}\operatorname {arccot}(a\,x)}{3}}-{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
∫ x m arccot ⁡ ( a x ) d x = x m + 1 arccot ⁡ ( a x ) m + 1 + a m + 1 ∫ x m + 1 a 2 x 2 + 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arccot}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arccot}(a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}+1}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\operatorname {arccot}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arccot}(a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}+1}}\,dx\quad (m\neq -1)}

Rumus integrasi fungsi arcsekan

[sunting | sunting sumber]
∫ arcsec ⁡ ( x ) d x = x arcsec ⁡ ( x ) − ln ⁡ ( | x | + x 2 − 1 ) + C = x arcsec ⁡ ( x ) − arcosh ⁡ | x | + C {\displaystyle \int \operatorname {arcsec}(x)\,dx=x\operatorname {arcsec}(x)\,-\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arcsec}(x)-\operatorname {arcosh} |x|+C} {\displaystyle \int \operatorname {arcsec}(x)\,dx=x\operatorname {arcsec}(x)\,-\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arcsec}(x)-\operatorname {arcosh} |x|+C}
∫ arcsec ⁡ ( a x ) d x = x arcsec ⁡ ( a x ) − 1 a arcosh ⁡ | a x | + C {\displaystyle \int \operatorname {arcsec}(ax)\,dx=x\operatorname {arcsec}(ax)-{\frac {1}{a}}\,\operatorname {arcosh} |ax|+C} {\displaystyle \int \operatorname {arcsec}(ax)\,dx=x\operatorname {arcsec}(ax)-{\frac {1}{a}}\,\operatorname {arcosh} |ax|+C}
∫ x arcsec ⁡ ( a x ) d x = x 2 arcsec ⁡ ( a x ) 2 − x 2 a 1 − 1 a 2 x 2 + C {\displaystyle \int x\operatorname {arcsec}(a\,x)\,dx={\frac {x^{2}\operatorname {arcsec}(a\,x)}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C} {\displaystyle \int x\operatorname {arcsec}(a\,x)\,dx={\frac {x^{2}\operatorname {arcsec}(a\,x)}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫ x 2 arcsec ⁡ ( a x ) d x = x 3 arcsec ⁡ ( a x ) 3 − 1 6 a 3 arctanh 1 − 1 a 2 x 2 − x 2 6 a 1 − 1 a 2 x 2 + C {\displaystyle \int x^{2}\operatorname {arcsec}(a\,x)\,dx={\frac {x^{3}\operatorname {arcsec}(a\,x)}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,C} {\displaystyle \int x^{2}\operatorname {arcsec}(a\,x)\,dx={\frac {x^{3}\operatorname {arcsec}(a\,x)}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,C}
∫ x m arcsec ⁡ ( a x ) d x = x m + 1 arcsec ⁡ ( a x ) m + 1 − 1 a ( m + 1 ) ∫ x m − 1 1 − 1 a 2 x 2 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arcsec}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arcsec}(a\,x)}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\operatorname {arcsec}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arcsec}(a\,x)}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}}\,dx\quad (m\neq -1)}

Rumus integrasi fungsi arckosekan

[sunting | sunting sumber]
∫ arccsc ⁡ ( x ) d x = x arccsc ⁡ ( x ) + ln ⁡ | x + x 2 − 1 | + C = x arccsc ⁡ ( x ) + arccosh ⁡ ( x ) + C {\displaystyle \int \operatorname {arccsc}(x)\,dx=x\operatorname {arccsc}(x)\,+\,\ln \left|x+{\sqrt {x^{2}-1}}\right|\,+\,C=x\operatorname {arccsc}(x)\,+\,\operatorname {arccosh} (x)\,+\,C} {\displaystyle \int \operatorname {arccsc}(x)\,dx=x\operatorname {arccsc}(x)\,+\,\ln \left|x+{\sqrt {x^{2}-1}}\right|\,+\,C=x\operatorname {arccsc}(x)\,+\,\operatorname {arccosh} (x)\,+\,C}
∫ arccsc ⁡ ( a x ) d x = x arccsc ⁡ ( a x ) + 1 a arctanh 1 − 1 a 2 x 2 + C {\displaystyle \int \operatorname {arccsc}(a\,x)\,dx=x\operatorname {arccsc}(a\,x)+{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C} {\displaystyle \int \operatorname {arccsc}(a\,x)\,dx=x\operatorname {arccsc}(a\,x)+{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫ x arccsc ⁡ ( a x ) d x = x 2 arccsc ⁡ ( a x ) 2 + x 2 a 1 − 1 a 2 x 2 + C {\displaystyle \int x\operatorname {arccsc}(a\,x)\,dx={\frac {x^{2}\operatorname {arccsc}(a\,x)}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C} {\displaystyle \int x\operatorname {arccsc}(a\,x)\,dx={\frac {x^{2}\operatorname {arccsc}(a\,x)}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫ x 2 arccsc ⁡ ( a x ) d x = x 3 arccsc ⁡ ( a x ) 3 + 1 6 a 3 arctanh 1 − 1 a 2 x 2 + x 2 6 a 1 − 1 a 2 x 2 + C {\displaystyle \int x^{2}\operatorname {arccsc}(a\,x)\,dx={\frac {x^{3}\operatorname {arccsc}(a\,x)}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,C} {\displaystyle \int x^{2}\operatorname {arccsc}(a\,x)\,dx={\frac {x^{3}\operatorname {arccsc}(a\,x)}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,C}
∫ x m arccsc ⁡ ( a x ) d x = x m + 1 arccsc ⁡ ( a x ) m + 1 + 1 a ( m + 1 ) ∫ x m − 1 1 − 1 a 2 x 2 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arccsc}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arccsc}(a\,x)}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\operatorname {arccsc}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arccsc}(a\,x)}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}}\,dx\quad (m\neq -1)}
  • l
  • b
  • s
Daftar integral
Fungsi rasional • Fungsi irrasional • Fungsi trigonometri • Invers trigonometri • Fungsi hiperbolik • Invers hiperbolik • Fungsi eksponensial • Fungsi logaritmik
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Daftar_integral_dari_fungsi_invers_trigonometri&oldid=23597303"
Kategori:
  • Integral
  • Trigonometri
  • Kalkulus

Best Rank
More Recommended Articles