More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Daftar integral dari fungsi rasional - Wikipedia bahasa Indonesia, ensiklopedia bebas
Daftar integral dari fungsi rasional - Wikipedia bahasa Indonesia, ensiklopedia bebas

Daftar integral dari fungsi rasional

  • العربية
  • Български
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Français
  • Galego
  • हिन्दी
  • Hrvatski
  • Հայերեն
  • Italiano
  • 日本語
  • ភាសាខ្មែរ
  • 한국어
  • Македонски
  • Nederlands
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Slovenščina
  • Српски / srpski
  • தமிழ்
  • Türkçe
  • Українська
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini membutuhkan lebih banyak pranala ke artikel lain untuk meningkatkan kualitasnya. Silakan mengembangkan artikel ini dengan menambahkan pranala yang relevan ke konteks pada teks eksisting. (Februari 2023) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)

tabel integral.

∫ ( a x + b ) n d x {\displaystyle \int (ax+b)^{n}dx} {\displaystyle \int (ax+b)^{n}dx} = ( a x + b ) n + 1 a ( n + 1 ) (untuk  n ≠ − 1 ) {\displaystyle ={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(untuk }}n\neq -1{\mbox{)}}\,\!} {\displaystyle ={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(untuk }}n\neq -1{\mbox{)}}\,\!}
∫ 1 a x + b d x {\displaystyle \int {\frac {1}{ax+b}}dx} {\displaystyle \int {\frac {1}{ax+b}}dx} = 1 a ln ⁡ | a x + b | {\displaystyle ={\frac {1}{a}}\ln \left|ax+b\right|} {\displaystyle ={\frac {1}{a}}\ln \left|ax+b\right|}
∫ x ( a x + b ) n d x {\displaystyle \int x(ax+b)^{n}dx} {\displaystyle \int x(ax+b)^{n}dx} = a ( n + 1 ) x − b a 2 ( n + 1 ) ( n + 2 ) ( a x + b ) n + 1 (untuk  n ∉ { − 1 , − 2 } ) {\displaystyle ={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(untuk }}n\not \in \{-1,-2\}{\mbox{)}}} {\displaystyle ={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(untuk }}n\not \in \{-1,-2\}{\mbox{)}}}
∫ x a x + b d x {\displaystyle \int {\frac {x}{ax+b}}dx} {\displaystyle \int {\frac {x}{ax+b}}dx} = x a − b a 2 ln ⁡ | a x + b | {\displaystyle ={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|} {\displaystyle ={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫ x ( a x + b ) 2 d x {\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx} {\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx} = b a 2 ( a x + b ) + 1 a 2 ln ⁡ | a x + b | {\displaystyle ={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|} {\displaystyle ={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫ x ( a x + b ) n d x {\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx} {\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx} = a ( 1 − n ) x − b a 2 ( n − 1 ) ( n − 2 ) ( a x + b ) n − 1 (untuk  n ∉ { 1 , 2 } ) {\displaystyle ={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(untuk }}n\not \in \{1,2\}{\mbox{)}}} {\displaystyle ={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(untuk }}n\not \in \{1,2\}{\mbox{)}}}
∫ x 2 a x + b d x {\displaystyle \int {\frac {x^{2}}{ax+b}}dx} {\displaystyle \int {\frac {x^{2}}{ax+b}}dx} = 1 a 3 ( ( a x + b ) 2 2 − 2 b ( a x + b ) + b 2 ln ⁡ | a x + b | ) {\displaystyle ={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)} {\displaystyle ={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫ x 2 ( a x + b ) 2 d x {\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx} {\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx} = 1 a 3 ( a x + b − 2 b ln ⁡ | a x + b | − b 2 a x + b ) {\displaystyle ={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)} {\displaystyle ={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫ x 2 ( a x + b ) 3 d x {\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx} {\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx} = 1 a 3 ( ln ⁡ | a x + b | + 2 b a x + b − b 2 2 ( a x + b ) 2 ) {\displaystyle ={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)} {\displaystyle ={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫ x 2 ( a x + b ) n d x {\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx} {\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx} = 1 a 3 ( − ( a x + b ) 3 − n ( n − 3 ) + 2 b ( a + b ) 2 − n ( n − 2 ) − b 2 ( a x + b ) 1 − n ( n − 1 ) ) (untuk  n ∉ { 1 , 2 , 3 } ) {\displaystyle ={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(a+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)\qquad {\mbox{(untuk }}n\not \in \{1,2,3\}{\mbox{)}}} {\displaystyle ={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(a+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)\qquad {\mbox{(untuk }}n\not \in \{1,2,3\}{\mbox{)}}}
∫ 1 x ( a x + b ) d x {\displaystyle \int {\frac {1}{x(ax+b)}}dx} {\displaystyle \int {\frac {1}{x(ax+b)}}dx} = − 1 b ln ⁡ | a x + b x | {\displaystyle =-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|} {\displaystyle =-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫ 1 x 2 ( a x + b ) d x {\displaystyle \int {\frac {1}{x^{2}(ax+b)}}dx} {\displaystyle \int {\frac {1}{x^{2}(ax+b)}}dx} = − 1 b x + a b 2 ln ⁡ | a x + b x | {\displaystyle =-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|} {\displaystyle =-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫ 1 x 2 ( a x + b ) 2 d x {\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}dx} {\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}dx} = − a ( 1 b 2 ( a x + b ) + 1 a b 2 x − 2 b 3 ln ⁡ | a x + b x | ) {\displaystyle =-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)} {\displaystyle =-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫ 1 x 2 + a 2 d x {\displaystyle \int {\frac {1}{x^{2}+a^{2}}}dx} {\displaystyle \int {\frac {1}{x^{2}+a^{2}}}dx} = 1 a arctan ⁡ x a {\displaystyle ={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!} {\displaystyle ={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!}
∫ 1 x 2 − a 2 d x = {\displaystyle \int {\frac {1}{x^{2}-a^{2}}}dx=} {\displaystyle \int {\frac {1}{x^{2}-a^{2}}}dx=}
  • − 1 a a r c t a n h x a = 1 2 a ln ⁡ a − x a + x (untuk  | x | < | a | ) {\displaystyle -{\frac {1}{a}}\,\mathrm {arctanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\mbox{(untuk }}|x|<|a|{\mbox{)}}\,\!} {\displaystyle -{\frac {1}{a}}\,\mathrm {arctanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\mbox{(untuk }}|x|<|a|{\mbox{)}}\,\!}
  • − 1 a a r c c o t h x a = 1 2 a ln ⁡ x − a x + a (untuk  | x | > | a | ) {\displaystyle -{\frac {1}{a}}\,\mathrm {arccoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\mbox{(untuk }}|x|>|a|{\mbox{)}}\,\!} {\displaystyle -{\frac {1}{a}}\,\mathrm {arccoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\mbox{(untuk }}|x|>|a|{\mbox{)}}\,\!}
∫ 1 a x 2 + b x + c d x = {\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx=} {\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx=}
  • 2 4 a c − b 2 arctan ⁡ 2 a x + b 4 a c − b 2 (untuk  4 a c − b 2 > 0 ) {\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(untuk }}4ac-b^{2}>0{\mbox{)}}} {\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(untuk }}4ac-b^{2}>0{\mbox{)}}}
  • − 2 b 2 − 4 a c a r c t a n h 2 a x + b b 2 − 4 a c = 1 b 2 − 4 a c ln ⁡ | 2 a x + b − b 2 − 4 a c 2 a x + b + b 2 − 4 a c | (untuk  4 a c − b 2 < 0 ) {\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {arctanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(untuk }}4ac-b^{2}<0{\mbox{)}}} {\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {arctanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(untuk }}4ac-b^{2}<0{\mbox{)}}}
  • − 2 2 a x + b (untuk  4 a c − b 2 = 0 ) {\displaystyle -{\frac {2}{2ax+b}}\qquad {\mbox{(untuk }}4ac-b^{2}=0{\mbox{)}}} {\displaystyle -{\frac {2}{2ax+b}}\qquad {\mbox{(untuk }}4ac-b^{2}=0{\mbox{)}}}
∫ x a x 2 + b x + c d x {\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx} {\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx} = 1 2 a ln ⁡ | a x 2 + b x + c | − b 2 a ∫ d x a x 2 + b x + c {\displaystyle ={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}} {\displaystyle ={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫ m x + n a x 2 + b x + c d x = {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx=} {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx=}
  • m 2 a ln ⁡ | a x 2 + b x + c | + 2 a n − b m a 4 a c − b 2 arctan ⁡ 2 a x + b 4 a c − b 2 (untuk  4 a c − b 2 > 0 ) {\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(untuk }}4ac-b^{2}>0{\mbox{)}}} {\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(untuk }}4ac-b^{2}>0{\mbox{)}}}
  • m 2 a ln ⁡ | a x 2 + b x + c | + 2 a n − b m a b 2 − 4 a c a r t a n h 2 a x + b b 2 − 4 a c (untuk  4 a c − b 2 < 0 ) {\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(untuk }}4ac-b^{2}<0{\mbox{)}}} {\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(untuk }}4ac-b^{2}<0{\mbox{)}}}
  • m 2 a ln ⁡ | a x 2 + b x + c | − 2 a n − b m a ( 2 a x + b ) (untuk  4 a c − b 2 = 0 ) {\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\,\,\,\,\,\,\,\,\,\,\qquad {\mbox{(untuk }}4ac-b^{2}=0{\mbox{)}}} {\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\,\,\,\,\,\,\,\,\,\,\qquad {\mbox{(untuk }}4ac-b^{2}=0{\mbox{)}}}
∫ 1 ( a x 2 + b x + c ) n d x = 2 a x + b ( n − 1 ) ( 4 a c − b 2 ) ( a x 2 + b x + c ) n − 1 + ( 2 n − 3 ) 2 a ( n − 1 ) ( 4 a c − b 2 ) ∫ 1 ( a x 2 + b x + c ) n − 1 d x {\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!} {\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!}
∫ x ( a x 2 + b x + c ) n d x = b x + 2 c ( n − 1 ) ( 4 a c − b 2 ) ( a x 2 + b x + c ) n − 1 − b ( 2 n − 3 ) ( n − 1 ) ( 4 a c − b 2 ) ∫ 1 ( a x 2 + b x + c ) n − 1 d x {\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!} {\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!}
∫ 1 x ( a x 2 + b x + c ) d x = 1 2 c ln ⁡ | x 2 a x 2 + b x + c | − b 2 c ∫ 1 a x 2 + b x + c d x {\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}dx} {\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}dx}

Fungsi rasional apapun dapat diintegrasikan melalui persamaan-persamaan di atas dengan memanfaatkan integrasi parsial, dengan menguraikan fungsi rasional menjadi penjumlahan fungsi-fungsi dalam bentuk

e x + f ( a x 2 + b x + c ) n {\displaystyle {\frac {ex+f}{\left(ax^{2}+bx+c\right)^{n}}}} {\displaystyle {\frac {ex+f}{\left(ax^{2}+bx+c\right)^{n}}}}.

Bacaan lebih lanjut

[sunting | sunting sumber]
  • Kurnianingsih, Sri (2007). Matematika SMA dan MA 3A Untuk Kelas XII Semester 1 Program IPA. Jakarta: Esis/Erlangga. ISBN 979-734-504-1. (Indonesia)
  • Kurnianingsih, Sri (2007). Matematika SMA dan MA 3A Untuk Kelas XII Semester 1 Program IPS. Jakarta: Esis/Erlangga. ISBN 979-734-567-X. (Indonesia)
  • l
  • b
  • s
Daftar integral
Fungsi rasional • Fungsi irrasional • Fungsi trigonometri • Invers trigonometri • Fungsi hiperbolik • Invers hiperbolik • Fungsi eksponensial • Fungsi logaritmik
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Daftar_integral_dari_fungsi_rasional&oldid=22959862"
Kategori:
  • Artikel yang kekurangan pranala Februari 2023
  • Semua artikel yang kekurangan pranala
  • Integral
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • Articles with invalid date parameter in template
  • Galat CS1: parameter tidak didukung
  • Halaman yang menggunakan pranala magis ISBN

Best Rank
More Recommended Articles