More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Matriks segitiga - Wikipedia bahasa Indonesia, ensiklopedia bebas
Matriks segitiga - Wikipedia bahasa Indonesia, ensiklopedia bebas

Matriks segitiga

  • العربية
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • Íslenska
  • Italiano
  • 日本語
  • 한국어
  • Lombard
  • Олык марий
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Português
  • Русский
  • Slovenščina
  • Svenska
  • தமிழ்
  • Türkçe
  • Українська
  • اردو
  • Tiếng Việt
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini bukan mengenai larik segitiga.
Untuk gelanggang, lihat gelanggang matriks segitiga.

Dalam aljabar linear, matriks segitiga adalah salah satu bentuk khusus dari matriks persegi. Sebuah matriks persegi dikatakan matriks segitiga bawah jika semua elemen di atas diagonal utama bernilai nol. Serupa dengan itu, matriks persegi dikatakan matriks segitiga atas jika semua elemen di bawah diagonal utama bernilai nol.

Karena persamaan matriks dalam bentuk matriks segitiga lebih mudah untuk diselesaikan, matriks ini memainkan peran penting dalam analisis numerik. Dengan menggunakan algoritme dekomposisi LU, matriks terbalikkan dapat dituliskan sebagai perkalian dari sebuah matriks segitiga bawah L {\displaystyle L} {\displaystyle L} dan sebuah matriks segitiga atas U {\displaystyle U} {\displaystyle U}, jika dan hanya jika semua minor utamanya bernilai tidak nol.

Definisi

[sunting | sunting sumber]

Matriks yang memiliki bentuk

L = [ ℓ 1 , 1 0 ℓ 2 , 1 ℓ 2 , 2 ℓ 3 , 1 ℓ 3 , 2 ⋱ ⋮ ⋮ ⋱ ⋱ ℓ n , 1 ℓ n , 2 … ℓ n , n − 1 ℓ n , n ] {\displaystyle L={\begin{bmatrix}\ell _{1,1}&&&&0\\\ell _{2,1}&\ell _{2,2}&&&\\\ell _{3,1}&\ell _{3,2}&\ddots &&\\\vdots &\vdots &\ddots &\ddots &\\\ell _{n,1}&\ell _{n,2}&\ldots &\ell _{n,n-1}&\ell _{n,n}\end{bmatrix}}} {\displaystyle L={\begin{bmatrix}\ell _{1,1}&&&&0\\\ell _{2,1}&\ell _{2,2}&&&\\\ell _{3,1}&\ell _{3,2}&\ddots &&\\\vdots &\vdots &\ddots &\ddots &\\\ell _{n,1}&\ell _{n,2}&\ldots &\ell _{n,n-1}&\ell _{n,n}\end{bmatrix}}}

disebut dengan matriks segitiga bawah, dan serupa dengan itu, matriks yang memiliki bentuk

U = [ u 1 , 1 u 1 , 2 u 1 , 3 … u 1 , n u 2 , 2 u 2 , 3 … u 2 , n ⋱ ⋱ ⋮ ⋱ u n − 1 , n 0 u n , n ] {\displaystyle U={\begin{bmatrix}u_{1,1}&u_{1,2}&u_{1,3}&\ldots &u_{1,n}\\&u_{2,2}&u_{2,3}&\ldots &u_{2,n}\\&&\ddots &\ddots &\vdots \\&&&\ddots &u_{n-1,n}\\0&&&&u_{n,n}\end{bmatrix}}} {\displaystyle U={\begin{bmatrix}u_{1,1}&u_{1,2}&u_{1,3}&\ldots &u_{1,n}\\&u_{2,2}&u_{2,3}&\ldots &u_{2,n}\\&&\ddots &\ddots &\vdots \\&&&\ddots &u_{n-1,n}\\0&&&&u_{n,n}\end{bmatrix}}}

Disebut dengan matriks segitiga atas. Matriks segitiga bawah umumnya dinyatakan oleh variabel L {\displaystyle L} {\displaystyle L} (dari bahasa Inggris Lower), dan matriks segitiga atas umumnya dinyatakan oleh variabel U {\displaystyle U} {\displaystyle U} (dari bahasa Inggris Upper). Matriks yang merupakan matriks segitiga bawah sekaligus matriks segitiga atas adalah matriks diagonal. Matriks yang serupa dengan matriks segitiga dikatakan dapat disegitigakan.[butuh rujukan]

Matriks non-persegi dengan semua elemen di atas (atau di bawah) diagonal utama bernilai nol disebut dengan matriks trapesium bawah (atau atas). Elemen-elemen tidak nol dari matriks ini menyerupai bentuk trapesium.

Contoh

[sunting | sunting sumber]

Matriks-matriks berikut termasuk matriks segitiga atas

[ 1 4 1 0 6 4 0 0 1 ] {\displaystyle {\begin{bmatrix}1&4&1\\0&6&4\\0&0&1\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}1&4&1\\0&6&4\\0&0&1\\\end{bmatrix}}}, [ 0 1 2 0 0 3 0 0 0 ] {\displaystyle {\begin{bmatrix}0&1&2\\0&0&3\\0&0&0\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}0&1&2\\0&0&3\\0&0&0\\\end{bmatrix}}}, [ 0 4 0 0 0 0 0 0 0 ] {\displaystyle {\begin{bmatrix}0&4&0\\0&0&0\\0&0&0\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}0&4&0\\0&0&0\\0&0&0\\\end{bmatrix}}}

dan matriks-matriks berikut termasuk matriks segitiga bawah

[ 1 0 0 2 8 0 4 9 7 ] {\displaystyle {\begin{bmatrix}1&0&0\\2&8&0\\4&9&7\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}1&0&0\\2&8&0\\4&9&7\\\end{bmatrix}}}, [ 0 0 0 2 0 0 4 9 7 ] {\displaystyle {\begin{bmatrix}0&0&0\\2&0&0\\4&9&7\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}0&0&0\\2&0&0\\4&9&7\\\end{bmatrix}}}, [ 1 0 0 2 0 0 1 0 0 ] {\displaystyle {\begin{bmatrix}1&0&0\\2&0&0\\1&0&0\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}1&0&0\\2&0&0\\1&0&0\\\end{bmatrix}}}

Sifat

[sunting | sunting sumber]

Transpos dari matriks segitiga atas adalah matriks segitiga bawah, dan juga sebaliknya.

Sebuah matriks segitiga yang juga merupakan matriks simetrik adalah matriks diagonal. Serupa dengan itu, matriks segitiga yang juga merupakan matriks normal (artinya A ∗ A = A A ∗ {\displaystyle A^{*}A=AA^{*}} {\displaystyle A^{*}A=AA^{*}}, dengan A ∗ {\displaystyle A^{*}} {\displaystyle A^{*}}adalah transpos sekawan) adalah matriks diagonal. Hal ini dapat terlihat dari nilai-nilai pada diagonal utama A ∗ A {\displaystyle A^{*}A} {\displaystyle A^{*}A} dan A A ∗ {\displaystyle AA^{*}} {\displaystyle AA^{*}}.

Determinan dan permanen dari matriks segitiga adalah hasil perkalian elemen-elemen diagonal utamanya. Lebih lanjut, nilai-nilai eigen dari matriks segitiga adalah elemen-elemen diagonal utamanya.

Subtitusi maju dan subtitusi mundur

[sunting | sunting sumber]

Persamaan matriks dalam bentuk L x = b {\displaystyle L\mathbf {x} =\mathbf {b} } {\displaystyle L\mathbf {x} =\mathbf {b} } atau U x = b {\displaystyle U\mathbf {x} =\mathbf {b} } {\displaystyle U\mathbf {x} =\mathbf {b} } sangat mudah untuk diselesaikan dengan menggunakan proses subtitusi maju untuk matriks segitiga bawah, dan secara analog, subtitusi mundur untuk matriks segitiga atas. Proses ini dinamai demikian karena untuk matriks segitiga bawah, kita perlu menghitung nilai x 1 {\displaystyle x_{1}} {\displaystyle x_{1}}, lalu mensubtitusinya ke persamaan selanjutnya untuk menghitung x 2 {\displaystyle x_{2}} {\displaystyle x_{2}}, dan mengulanginya sampai ke x n {\displaystyle x_{n}} {\displaystyle x_{n}}. Pada matriks segitiga atas, kita perlu bekerja mundur, dengan menghitung x n {\displaystyle x_{n}} {\displaystyle x_{n}}, lalu mensubtitusinya ke persamaan sebelumnya untuk menghitung x n − 1 {\displaystyle x_{n-1}} {\displaystyle x_{n-1}}, dan mengulanginya sampai ke x 1 {\displaystyle x_{1}} {\displaystyle x_{1}}.

Perhatikan bahwa proses tersebut tidak memerlukan proses mencari invers dari matriks.

Subtitusi maju

[sunting | sunting sumber]

Persamaan matriks L x = b {\displaystyle L\mathbf {x} =\mathbf {b} } {\displaystyle L\mathbf {x} =\mathbf {b} } dapat dituliskan sebagai sistem persamaan linear

ℓ 1 , 1 x 1 = b 1 ℓ 2 , 1 x 1 + ℓ 2 , 2 x 2 = b 2 ⋮ ⋮ ⋱ ⋮ ℓ m , 1 x 1 + ℓ m , 2 x 2 + ⋯ + ℓ m , m x m = b m {\displaystyle {\begin{matrix}\ell _{1,1}x_{1}&&&&&&&=&b_{1}\\\ell _{2,1}x_{1}&+&\ell _{2,2}x_{2}&&&&&=&b_{2}\\\vdots &&\vdots &&\ddots &&&&\vdots \\\ell _{m,1}x_{1}&+&\ell _{m,2}x_{2}&+&\dotsb &+&\ell _{m,m}x_{m}&=&b_{m}\\\end{matrix}}} {\displaystyle {\begin{matrix}\ell _{1,1}x_{1}&&&&&&&=&b_{1}\\\ell _{2,1}x_{1}&+&\ell _{2,2}x_{2}&&&&&=&b_{2}\\\vdots &&\vdots &&\ddots &&&&\vdots \\\ell _{m,1}x_{1}&+&\ell _{m,2}x_{2}&+&\dotsb &+&\ell _{m,m}x_{m}&=&b_{m}\\\end{matrix}}}

Perhatikan bahwa persamaan pertama, yakni ℓ 1 , 1 x 1 = b 1 {\displaystyle \ell _{1,1}x_{1}=b_{1}} {\displaystyle \ell _{1,1}x_{1}=b_{1}}, hanya mengandung suku x 1 {\displaystyle x_{1}} {\displaystyle x_{1}}, dan dapat diselesaikan secara langsung. Persamaan kedua hanya mengandung x 1 {\displaystyle x_{1}} {\displaystyle x_{1}} dan x 2 {\displaystyle x_{2}} {\displaystyle x_{2}}, sehingga dapat diselesaikan dengan mensubtitusi nilai x 1 {\displaystyle x_{1}} {\displaystyle x_{1}} yang didapatkan sebelumnya. Melanjutkan proses dalam cara ini, persamaan ke- k {\displaystyle k} {\displaystyle k} hanya mengandung suku x 1 , … , x k {\displaystyle x_{1},\dots ,x_{k}} {\displaystyle x_{1},\dots ,x_{k}}, dan nilai x k {\displaystyle x_{k}} {\displaystyle x_{k}} dapat ditentukan dengan menggunakan nilai x 1 , … , x k − 1 {\displaystyle x_{1},\dots ,x_{k-1}} {\displaystyle x_{1},\dots ,x_{k-1}} yang telah didapatkan sebelumya. Dengan demikian, didapatkan rumusan:

x 1 = b 1 ℓ 1 , 1 , x 2 = b 2 − ℓ 2 , 1 x 1 ℓ 2 , 2 ,     ⋮ x m = b m − ∑ i = 1 m − 1 ℓ m , i x i ℓ m , m . {\displaystyle {\begin{aligned}x_{1}&={\frac {b_{1}}{\ell _{1,1}}},\\x_{2}&={\frac {b_{2}-\ell _{2,1}x_{1}}{\ell _{2,2}}},\\&\ \ \vdots \\x_{m}&={\frac {b_{m}-\sum _{i=1}^{m-1}\ell _{m,i}x_{i}}{\ell _{m,m}}}.\end{aligned}}} {\displaystyle {\begin{aligned}x_{1}&={\frac {b_{1}}{\ell _{1,1}}},\\x_{2}&={\frac {b_{2}-\ell _{2,1}x_{1}}{\ell _{2,2}}},\\&\ \ \vdots \\x_{m}&={\frac {b_{m}-\sum _{i=1}^{m-1}\ell _{m,i}x_{i}}{\ell _{m,m}}}.\end{aligned}}}

Persamaan matriks yang melibatkan matriks segitiga atas U {\displaystyle U} {\displaystyle U} dapat diselesaikan dengan cara yang analog, namun bekerja mundur dari x m {\displaystyle x_{m}} {\displaystyle x_{m}}.

Referensi

[sunting | sunting sumber]
  • Axler, Sheldon (1996), Linear Algebra Done Right, Springer-Verlag, ISBN 0-387-98258-2
  • Drazin, M. P.; Dungey, J. W.; Gruenberg, K. W. (1951), "Some theorems on commutative matrices", J. London Math. Soc., 26 (3): 221–228, doi:10.1112/jlms/s1-26.3.221
  • Herstein, I. N. (1975), Topics in Algebra (Edisi 2nd), John Wiley and Sons, ISBN 0-471-01090-1
  • Prasolov, Viktor (1994), Problems and theorems in linear algebra, ISBN 9780821802366
  • l
  • b
  • s
Kelas-kelas matriks
Batasan pada elemen matriks
  • (0,1)
  • Alternatif
  • Anti-diagonal
  • Anti-Hermitian
  • Anti-simetris
  • Panah condong
  • Bidiagonal
  • Biner
  • Bisimetris
  • Diagonal balok
  • Blok
  • Blok segitiga
  • Sentrosimetri
  • Konferensi
  • Hadamard kompleks
  • Kopositif
  • Dominan diagonal
  • Ekuivalen
  • Permutasi generalisasi
  • Bilangan bulat
  • Logis
  • Monomial
  • Nonnegatif
  • Dipartisi
  • Persimetris
  • Polinomial
  • Positif
  • Kuarter
  • Tanda
  • Signatur
  • Hermitian-miring
  • Simetris-miring
  • Garis langit
  • Z
  • Boole
  • Cauchy
  • Diagonal
  • Elementer
  • Frobenius
  • Hadamard
  • Hankel
  • Hermite
  • Hessenberg
  • Metzler
  • Moore
  • Parisi
  • Pita
  • Permutasi
  • Rongga
  • Segitiga
  • Simetrik
  • Sylvester
  • Transformasi Fourier diskret
  • Tridiagonal
  • Toeplitz
  • Uniter
  • Vandermonde
  • Walsh
Konstan
  • Bergeser
  • Pertukaran
  • Hilbert
  • Identitas
  • Lehmer
  • Nol
  • Pascal
  • Pauli
  • Redheffer
  • Satu
Batasan pada nilai eigen dan vektor eigen-nya
  • Kompasi
  • Konvergen
  • Defektif
  • Diagonalisasi
  • Generalisasi-positif
  • Stabilitas
  • Hurwitz
  • Stieltjes
Batasan pada hasil perkalian atau inversnya
  • Congruent
  • Involutori
  • Generalisasi unimodular
  • Penimbangan
  • Idempoten atau Proyeksi
  • Nilpoten
  • Normal
  • Ortogonal
  • Singular
  • Terbalikkan (nonsingular)
  • Unimodular
  • Unipoten
Dengan aplikasi tertentu
  • Adjugat
  • Tanda alternatif
  • Augmenten
  • Lingkaran
  • Komutasi
  • Kofunsi
  • Derogasi
  • Duplikasi
  • Eliminasi
  • Jarak Euklides
  • Matriks fundamental (persamaan diferensial linear)
  • Generator
  • Geser
  • Persamaan
  • Acak
  • Bézout
  • Carleman
  • Cartan
  • Coxeter
  • Gram
  • Hesse
  • Householder
  • Imbalan
  • Jacobi
  • Jarak
  • Kofaktor
  • Seifert
  • Simplektik
  • Transformasi
  • Pick
  • Positif total
  • Rotasi
  • Wedderburn
  • X–Y–Z
Digunakan dalam statistika
  • Centering
  • Design
  • Dispersion
  • Doubly stochastic
  • Fisher information
  • Hat
  • Precision
  • Bernoulli
  • Korelasi
  • Kovariansi
  • Stokastik (Markov)
Digunakan dalam teori graf
  • Adjacency
  • Biadjacency
  • Degree
  • Incidence
  • Seidel adjacency
  • Skew-adjacency
  • Edmonds
  • Laplace
  • Tutte
Digunakan dalam sains dan teknik
  • Fundamental (computer vision)
  • Fuzzy associative
  • Irregular
  • Overlap
  • State transition
  • Substitution
  • Z (chemistry)
  • Cabibbo–Kobayashi–Maskawa
  • Densitas
  • Gamma
  • Gell-Mann
  • Hamilton
  • S
Istilah yang berhubungan
  • Jordan canonical form
  • Matrix exponential
  • Matrix representation of conic sections
  • Perfect matrix
  • Quaternionic matrix
  • Bebas linear
  • Bentuk eselon baris
  • Invers semu
  • Wronskian
  • Daftar jenis matriks
  • Kategori:Matriks
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Matriks_segitiga&oldid=22711335"
Kategori:
  • Aljabar linear numerik
  • Matriks
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • Articles with hatnote templates targeting a nonexistent page
  • Artikel dengan pernyataan yang tidak disertai rujukan
  • Artikel dengan pernyataan yang tidak disertai rujukan Januari 2023

Best Rank
More Recommended Articles