More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Integral Fresnel - Wikipedia bahasa Indonesia, ensiklopedia bebas
Integral Fresnel - Wikipedia bahasa Indonesia, ensiklopedia bebas

Integral Fresnel

  • العربية
  • Català
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • עברית
  • Magyar
  • Italiano
  • 日本語
  • ភាសាខ្មែរ
  • Македонски
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Српски / srpski
  • Svenska
  • ไทย
  • Türkçe
  • Українська
  • 中文
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Wikimedia Commons
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Kalkulus
  • Teorema dasar
  • Limit fungsi
  • Kontinuitas
  • Teorema nilai purata
  • Teorema Rolle
Diferensial
Definisi
  • Turunan (perumuman)
  • Tabel turunan
  • Diferensial
    • infinitesimal
    • fungsi
    • total
Konsep
  • Notasi untuk pendiferensialan
  • Turunan kedua
  • Turunan ketiga
  • Perubahan variabel
  • Pendiferensialan implisit
  • Laju yang berkaitan
  • Teorema Taylor
Kaidah dan identitas
  • Kaidah penjumlahan dalam pendiferensialan
  • Perkalian
  • Rantai
  • Pangkat
  • Pembagian
  • Rumus Faà di Bruno
Integral
Definisi
  • Antiderivatif
  • Integral (takwajar)
  • Integral Riemann
  • Integrasi Lebesgue
  • Integrasi kontur
  • Tabel integral
Integrasi secara
  • parsial
  • cakram
  • kulit tabung
  • substitusi (trigonometri)
  • pecahan parsial
  • Urutan
  • Rumus reduksi
Deret
  • geometri (aritmetika-geometrik)
  • harmonik
  • selang-seling
  • pangkat
  • binomial
  • Taylor
Uji kekonvergenan
  • uji suku
  • rasio
  • akar
  • integral
  • perbandingan langsung

  • perbandingan limit
  • deret selang-seling
  • kondensasi Cauchy
  • Dirichlet
  • Abel
Vektor
  • Gradien
  • Divergence
  • Keikalan
  • Laplace
  • berarah
  • identitas
Teorema
  • Kedivergenan
  • Gradien
  • Green
  • Stokes
Multivariabel
Formalisme
  • matriks
  • tensor
  • eksterior
  • geometrik
Definisi
  • Turunan parsial
  • Integral lipat
  • Integral garis
  • Permukaan integral
  • integral volume
  • Jacobi
  • Hesse
Khusus
  • fraksional
  • Malliavin
  • stokastik
  • variasi
  • l
  • b
  • s
Artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Fresnel integral di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Plot dari nilai S(x) dan C(x). Maksimum C(x) di sekitar nilai 0.977451424. Jika nilai S di integral kan dan nilai C didefinisikan πt2/2 bukan nilai t2, maka gambar akan diperkecil secara vertikal dan horizontal (lihat di bawah).

Integral Fresnel pada nilai S(x) dan C(x) adalah dua fungsi transendental yang ditemukan oleh Augustin-Jean Fresnel yang digunakan dalam optik dan terkait erat dengan fungsi kesalahan (erf). Ketika muncul dalam deskripsi fenomena difraksi Fresnel pada medan terdekat dan dapat didefinisikan melalui representasi integral, sebagai berikut:

S ( x ) = ∫ 0 x sin ⁡ ( t 2 ) d t , C ( x ) = ∫ 0 x cos ⁡ ( t 2 ) d t . {\displaystyle S(x)=\int _{0}^{x}\sin(t^{2})\,dt,\quad C(x)=\int _{0}^{x}\cos(t^{2})\,dt.} {\displaystyle S(x)=\int _{0}^{x}\sin(t^{2})\,dt,\quad C(x)=\int _{0}^{x}\cos(t^{2})\,dt.}

Dari rumus di atas plot parametrik simulasi dari nilai S(x) dan nilai C(x) adalah hasil nilai spiral Euler atau juga dikenal sebagai spiral Cornu atau clothoid. Baru-baru ini, mereka telah digunakan dalam desain jalan raya dan proyek teknik lainnya.[1]

Definisi

[sunting | sunting sumber]
Integral Fresnel dengan nilai argumen πt2/2 bukan nilai t2 konvorgumen 0.5.

Integral Fresnel menerima ekspansi deret pangkat berikut yang menyatu untuk semua yaitu nilai x:

S ( x ) = ∫ 0 x sin ⁡ ( t 2 ) d t = ∑ n = 0 ∞ ( − 1 ) n x 4 n + 3 ( 2 n + 1 ) ! ( 4 n + 3 ) . C ( x ) = ∫ 0 x cos ⁡ ( t 2 ) d t = ∑ n = 0 ∞ ( − 1 ) n x 4 n + 1 ( 2 n ) ! ( 4 n + 1 ) . {\displaystyle {\begin{aligned}S(x)&=\int _{0}^{x}\sin(t^{2})\,dt=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{4n+3}}{(2n+1)!(4n+3)}}.\\C(x)&=\int _{0}^{x}\cos(t^{2})\,dt=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{4n+1}}{(2n)!(4n+1)}}.\end{aligned}}} {\displaystyle {\begin{aligned}S(x)&=\int _{0}^{x}\sin(t^{2})\,dt=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{4n+3}}{(2n+1)!(4n+3)}}.\\C(x)&=\int _{0}^{x}\cos(t^{2})\,dt=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{4n+1}}{(2n)!(4n+1)}}.\end{aligned}}}

Beberapa tabel yang banyak digunakan adalah[2][3] nila π t 2 / 2 {\displaystyle \pi t^{2}/2} {\displaystyle \pi t^{2}/2} saat digantikan oleh nilai t 2 {\displaystyle t^{2}} {\displaystyle t^{2}} untuk argumen integral yang merumuskan nilai S(x) dan C(x). Hal tersebut dapat mengubah limit tak hingga dari nilai ( 1 / 2 ) ⋅ π / 2 {\displaystyle \textstyle (1/2)\cdot {\sqrt {\pi /2}}} {\displaystyle \textstyle (1/2)\cdot {\sqrt {\pi /2}}} untuk nilai 1 / 2 {\displaystyle 1/2} {\displaystyle 1/2} dan panjang busur yang digunakan untuk putaran spiral pertama ( 2 π ) {\displaystyle (2\pi )} {\displaystyle (2\pi )} to 2 (at t = 2 {\displaystyle t=2} {\displaystyle t=2}). Fungsi alternatif saat ini biasanya dikenal sebagai Integral Fresnel yang Dinormalisasi.

Spiral Euler

[sunting | sunting sumber]
Artikel utama: Spiral Euler
Spiral euler ( x , y ) = ( C ( t ) , S ( t ) ) {\displaystyle (x,y)=(C(t),S(t))} {\displaystyle (x,y)=(C(t),S(t))}. Spiral menyatu ke tengah lubang pada gambar karena t {\displaystyle t} {\displaystyle t} cenderung positif atau negatif tak terhingga.

Spiral Euler, atau dikenal juga sebagai Cornu spiral atau clothoid, adalah kurva yang dihasilkan oleh plot parametrik dari S ( t ) {\displaystyle S(t)} {\displaystyle S(t)} melawan C ( t ) {\displaystyle C(t)} {\displaystyle C(t)}. Spiral Cornu diciptakan oleh Marie Alfred Cornu sebagai nomogram untuk komputasi difraksi dalam sains dan teknik.

Dari definisi integral Fresnel, infinitesimal d x {\displaystyle dx} {\displaystyle dx} dan d y {\displaystyle dy} {\displaystyle dy} demikian:

d x = C ′ ( t ) d t = cos ⁡ ( t 2 ) d t , d y = S ′ ( t ) d t = sin ⁡ ( t 2 ) d t . {\displaystyle {\begin{aligned}dx&=C'(t)\,dt=\cos(t^{2})\,dt,\\dy&=S'(t)\,dt=\sin(t^{2})\,dt.\end{aligned}}} {\displaystyle {\begin{aligned}dx&=C'(t)\,dt=\cos(t^{2})\,dt,\\dy&=S'(t)\,dt=\sin(t^{2})\,dt.\end{aligned}}}

Dengan demikian panjang spiral yang diukur dari asal dapat dinyatakan sebagai

L = ∫ 0 t 0 d x 2 + d y 2 = ∫ 0 t 0 d t = t 0 . {\displaystyle L=\int _{0}^{t_{0}}{\sqrt {dx^{2}+dy^{2}}}=\int _{0}^{t_{0}}dt=t_{0}.} {\displaystyle L=\int _{0}^{t_{0}}{\sqrt {dx^{2}+dy^{2}}}=\int _{0}^{t_{0}}dt=t_{0}.}

Artinya, parameter t {\displaystyle t} {\displaystyle t} adalah panjang kurva yang diukur dari titik asal ( 0 , 0 ) {\displaystyle (0,0)} {\displaystyle (0,0)}, dan spiral Euler memiliki panjang tak terbatas. The vector ( cos ⁡ ( t 2 ) , sin ⁡ ( t 2 ) ) {\displaystyle (\cos(t^{2}),\sin(t^{2}))} {\displaystyle (\cos(t^{2}),\sin(t^{2}))} juga mengekspresikan satuan vektor tangen di sepanjang spiral, memberi θ = t 2 {\displaystyle \theta =t^{2}} {\displaystyle \theta =t^{2}}. Karena t adalah panjang kurva, maka kelengkungan tersebut κ {\displaystyle \kappa } {\displaystyle \kappa } dapat dinyatakan sebagai

κ = 1 R = d θ d t = 2 t . {\displaystyle \kappa ={\frac {1}{R}}={\frac {d\theta }{dt}}=2t.} {\displaystyle \kappa ={\frac {1}{R}}={\frac {d\theta }{dt}}=2t.}

Dengan demikian laju perubahan kelengkungan terhadap panjang kurva adalah

d κ d t = d 2 θ d t 2 = 2. {\displaystyle {\frac {d\kappa }{dt}}={\frac {d^{2}\theta }{dt^{2}}}=2.} {\displaystyle {\frac {d\kappa }{dt}}={\frac {d^{2}\theta }{dt^{2}}}=2.}

Spiral Euler memiliki sifat bahwa kelengkungan pada titik mana pun sebanding dengan jarak sepanjang spiral, diukur dari titik awalnya. Properti ini membuatnya berguna sebagai kurva transisi dalam teknik jalan raya dan perkeretaapian: Jika kendaraan mengikuti spiral dengan kecepatan satuan, parameter t {\displaystyle t} {\displaystyle t} di turunan di atas juga mewakili waktu. Akibatnya, kendaraan yang mengikuti spiral dengan kecepatan konstan akan memiliki laju konstan percepatan sudut.

Bagian dari spiral Euler biasanya digabungkan ke dalam bentuk loop roller coaster untuk membuat apa yang dikenal sebagai lingkaran clothoid.

Properti

[sunting | sunting sumber]
  • C(x) dan S(x) adalah fungsi ganjil dari x.
  • Asimtot integral Fresnel sebagai x → ∞ {\displaystyle x\to \infty } {\displaystyle x\to \infty } diberikan oleh rumus:
S ( x ) = π 2 ( sign ( x ) 2 − [ 1 + O ( x − 4 ) ] ( cos ⁡ ( x 2 ) x 2 π + sin ⁡ ( x 2 ) x 3 8 π ) ) , C ( x ) = π 2 ( sign ( x ) 2 + [ 1 + O ( x − 4 ) ] ( sin ⁡ ( x 2 ) x 2 π − cos ⁡ ( x 2 ) x 3 8 π ) ) . {\displaystyle {\begin{aligned}S(x)&={\sqrt {\frac {\pi }{2}}}\left({\frac {{\mbox{sign}}{(x)}}{2}}-\left[1+O(x^{-4})\right]\left({\frac {\cos {(x^{2})}}{x{\sqrt {2\pi }}}}+{\frac {\sin {(x^{2})}}{x^{3}{\sqrt {8\pi }}}}\right)\right),\\C(x)&={\sqrt {\frac {\pi }{2}}}\left({\frac {{\mbox{sign}}{(x)}}{2}}+\left[1+O(x^{-4})\right]\left({\frac {\sin {(x^{2})}}{x{\sqrt {2\pi }}}}-{\frac {\cos {(x^{2})}}{x^{3}{\sqrt {8\pi }}}}\right)\right).\end{aligned}}} {\displaystyle {\begin{aligned}S(x)&={\sqrt {\frac {\pi }{2}}}\left({\frac {{\mbox{sign}}{(x)}}{2}}-\left[1+O(x^{-4})\right]\left({\frac {\cos {(x^{2})}}{x{\sqrt {2\pi }}}}+{\frac {\sin {(x^{2})}}{x^{3}{\sqrt {8\pi }}}}\right)\right),\\C(x)&={\sqrt {\frac {\pi }{2}}}\left({\frac {{\mbox{sign}}{(x)}}{2}}+\left[1+O(x^{-4})\right]\left({\frac {\sin {(x^{2})}}{x{\sqrt {2\pi }}}}-{\frac {\cos {(x^{2})}}{x^{3}{\sqrt {8\pi }}}}\right)\right).\end{aligned}}}
Integral Fresnel yang kompleks S(z)
  • Dengan menggunakan ekspansi deret pangkat di atas, integral Fresnel dapat diperpanjang ke domain bilangan kompleks s, di mana mereka menjadi fungsi analitik dari variabel kompleks.
  • C(z) dan S(z) adalah seluruh fungsi dari variabel kompleks z.
  • Integral Fresnel dapat diekspresikan menggunakan fungsi kesalahan sebagai berikut:[4]
Integral Fresnel yang kompleks C(z)
S ( z ) = π 2 1 + i 4 [ erf ⁡ ( 1 + i 2 z ) − i erf ⁡ ( 1 − i 2 z ) ] , C ( z ) = π 2 1 − i 4 [ erf ⁡ ( 1 + i 2 z ) + i erf ⁡ ( 1 − i 2 z ) ] . {\displaystyle {\begin{aligned}S(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1+i}{4}}\left[\operatorname {erf} \left({\frac {1+i}{\sqrt {2}}}z\right)-i\operatorname {erf} \left({\frac {1-i}{\sqrt {2}}}z\right)\right],\\C(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1-i}{4}}\left[\operatorname {erf} \left({\frac {1+i}{\sqrt {2}}}z\right)+i\operatorname {erf} \left({\frac {1-i}{\sqrt {2}}}z\right)\right].\end{aligned}}} {\displaystyle {\begin{aligned}S(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1+i}{4}}\left[\operatorname {erf} \left({\frac {1+i}{\sqrt {2}}}z\right)-i\operatorname {erf} \left({\frac {1-i}{\sqrt {2}}}z\right)\right],\\C(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1-i}{4}}\left[\operatorname {erf} \left({\frac {1+i}{\sqrt {2}}}z\right)+i\operatorname {erf} \left({\frac {1-i}{\sqrt {2}}}z\right)\right].\end{aligned}}}
atau
C ( z ) + i S ( z ) = π 2 1 + i 2 erf ⁡ ( 1 − i 2 z ) , S ( z ) + i C ( z ) = π 2 1 + i 2 erf ⁡ ( 1 + i 2 z ) . {\displaystyle {\begin{aligned}C(z)+iS(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1+i}{2}}\operatorname {erf} \left({\frac {1-i}{\sqrt {2}}}z\right),\\S(z)+iC(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1+i}{2}}\operatorname {erf} \left({\frac {1+i}{\sqrt {2}}}z\right).\end{aligned}}} {\displaystyle {\begin{aligned}C(z)+iS(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1+i}{2}}\operatorname {erf} \left({\frac {1-i}{\sqrt {2}}}z\right),\\S(z)+iC(z)&={\sqrt {\frac {\pi }{2}}}{\frac {1+i}{2}}\operatorname {erf} \left({\frac {1+i}{\sqrt {2}}}z\right).\end{aligned}}}


Generalisasi

[sunting | sunting sumber]

Integral

∫ x m exp ⁡ ( i x n ) d x = ∫ ∑ l = 0 ∞ i l x m + n l l ! d x = ∑ l = 0 ∞ i l ( m + n l + 1 ) x m + n l + 1 l ! {\displaystyle \int x^{m}\exp(ix^{n})\,dx=\int \sum _{l=0}^{\infty }{\frac {i^{l}x^{m+nl}}{l!}}\,dx=\sum _{l=0}^{\infty }{\frac {i^{l}}{(m+nl+1)}}{\frac {x^{m+nl+1}}{l!}}} {\displaystyle \int x^{m}\exp(ix^{n})\,dx=\int \sum _{l=0}^{\infty }{\frac {i^{l}x^{m+nl}}{l!}}\,dx=\sum _{l=0}^{\infty }{\frac {i^{l}}{(m+nl+1)}}{\frac {x^{m+nl+1}}{l!}}}

Integral adalah fungsi hipergeometrik konfluen dan juga fungsi gamma tidak lengkap.[5]

∫ x m exp ⁡ ( i x n ) d x = x m + 1 m + 1 1 F 1 ( m + 1 n 1 + m + 1 n ∣ i x n ) = 1 n i ( m + 1 ) / n γ ( m + 1 n , − i x n ) , {\displaystyle {\begin{aligned}\int x^{m}\exp(ix^{n})\,dx&={\frac {x^{m+1}}{m+1}}\,_{1}F_{1}\left({\begin{array}{c}{\frac {m+1}{n}}\\1+{\frac {m+1}{n}}\end{array}}\mid ix^{n}\right)\\&={\frac {1}{n}}i^{(m+1)/n}\gamma \left({\frac {m+1}{n}},-ix^{n}\right),\end{aligned}}} {\displaystyle {\begin{aligned}\int x^{m}\exp(ix^{n})\,dx&={\frac {x^{m+1}}{m+1}}\,_{1}F_{1}\left({\begin{array}{c}{\frac {m+1}{n}}\\1+{\frac {m+1}{n}}\end{array}}\mid ix^{n}\right)\\&={\frac {1}{n}}i^{(m+1)/n}\gamma \left({\frac {m+1}{n}},-ix^{n}\right),\end{aligned}}}

Integral direduksi menjadi integral Fresnel jika bagian nyata atau imajiner diambil:

∫ x m sin ⁡ ( x n ) d x = x m + n + 1 m + n + 1 1 F 2 ( 1 2 + m + 1 2 n 3 2 + m + 1 2 n , 3 2 ∣ − x 2 n 4 ) {\displaystyle \int x^{m}\sin(x^{n})\,dx={\frac {x^{m+n+1}}{m+n+1}}\,_{1}F_{2}\left({\begin{array}{c}{\frac {1}{2}}+{\frac {m+1}{2n}}\\{\frac {3}{2}}+{\frac {m+1}{2n}},{\frac {3}{2}}\end{array}}\mid -{\frac {x^{2n}}{4}}\right)} {\displaystyle \int x^{m}\sin(x^{n})\,dx={\frac {x^{m+n+1}}{m+n+1}}\,_{1}F_{2}\left({\begin{array}{c}{\frac {1}{2}}+{\frac {m+1}{2n}}\\{\frac {3}{2}}+{\frac {m+1}{2n}},{\frac {3}{2}}\end{array}}\mid -{\frac {x^{2n}}{4}}\right)}.

Istilah utama dalam ekspansi asimtotik adalah:

1 F 1 ( m + 1 n 1 + m + 1 n ∣ i x n ) ∼ m + 1 n Γ ( m + 1 n ) e i π ( m + 1 ) / ( 2 n ) x − m − 1 , {\displaystyle _{1}F_{1}\left({\begin{array}{c}{\frac {m+1}{n}}\\1+{\frac {m+1}{n}}\end{array}}\mid ix^{n}\right)\sim {\frac {m+1}{n}}\,\Gamma \left({\frac {m+1}{n}}\right)e^{i\pi (m+1)/(2n)}x^{-m-1},} {\displaystyle _{1}F_{1}\left({\begin{array}{c}{\frac {m+1}{n}}\\1+{\frac {m+1}{n}}\end{array}}\mid ix^{n}\right)\sim {\frac {m+1}{n}}\,\Gamma \left({\frac {m+1}{n}}\right)e^{i\pi (m+1)/(2n)}x^{-m-1},}

Oleh karena itu, dapat diberikan kesimpulan bahwa:

∫ 0 ∞ x m exp ⁡ ( i x n ) d x = 1 n Γ ( m + 1 n ) e i π ( m + 1 ) / ( 2 n ) . {\displaystyle \int _{0}^{\infty }x^{m}\exp(ix^{n})\,dx={\frac {1}{n}}\,\Gamma \left({\frac {m+1}{n}}\right)e^{i\pi (m+1)/(2n)}.} {\displaystyle \int _{0}^{\infty }x^{m}\exp(ix^{n})\,dx={\frac {1}{n}}\,\Gamma \left({\frac {m+1}{n}}\right)e^{i\pi (m+1)/(2n)}.}

Untuk m = 0, bagian imajiner dari persamaan ini secara khusus adalah:

∫ 0 ∞ sin ⁡ ( x a ) d x = Γ ( 1 + 1 a ) sin ⁡ ( π 2 a ) , {\displaystyle \int _{0}^{\infty }\sin(x^{a})\,dx=\Gamma \left(1+{\frac {1}{a}}\right)\sin \left({\frac {\pi }{2a}}\right),} {\displaystyle \int _{0}^{\infty }\sin(x^{a})\,dx=\Gamma \left(1+{\frac {1}{a}}\right)\sin \left({\frac {\pi }{2a}}\right),}

Dengan sisi kiri menyatu untuk a> 1 dan sisi kanan menjadi ekstensi analitiknya ke seluruh bidang kurang di mana letak kutub Γ ( a − 1 ) {\displaystyle \Gamma (a^{-1})} {\displaystyle \Gamma (a^{-1})}.

Transformasi Kummer dari fungsi hipergeometrik konfluen adalah

∫ x m exp ⁡ ( i x n ) d x = V n , m ( x ) e i x n , {\displaystyle \int x^{m}\exp(ix^{n})\,dx=V_{n,m}(x)e^{ix^{n}},} {\displaystyle \int x^{m}\exp(ix^{n})\,dx=V_{n,m}(x)e^{ix^{n}},}

Dengan

V n , m := x m + 1 m + 1 1 F 1 ( 1 1 + m + 1 n ∣ − i x n ) . {\displaystyle V_{n,m}:={\frac {x^{m+1}}{m+1}}\,_{1}F_{1}\left({\begin{array}{c}1\\1+{\frac {m+1}{n}}\end{array}}\mid -ix^{n}\right).} {\displaystyle V_{n,m}:={\frac {x^{m+1}}{m+1}}\,_{1}F_{1}\left({\begin{array}{c}1\\1+{\frac {m+1}{n}}\end{array}}\mid -ix^{n}\right).}

Penggunaan Integral Fresnel

[sunting | sunting sumber]

Penggunaan Integral Fresnel pada awalnya digunakan dalam perhitungan intensitas medan elektromagnetik di lingkungan di mana cahaya membelok di sekitar objek buram.[6][7]

Baru-baru ini, mereka telah menggunakan perhitungan ini sebagai desain jalan raya dan rel kereta api, khususnya zona transisi kelengkungannya, lihat kurva transisi lintasan.[8] developed a set of efficient approximations based on rational functions that give relative errors down to 2×10−19. atau menghitung transisi pada trek velodrome untuk memungkinkan masuknya cepat ke tikungan dan keluar secara bertahap.[9] 1,6×10−9.[10]

Lihat pula

[sunting | sunting sumber]
  • Integral Böhmer
  • Zona Fresnel
  • Lacak kurva transisi
  • Spiral euler
  • Pelat zona
  • Integral Dirichlet
  • Fungsi Kerucut dan Parabola
  • Fungsi Bessel
  • Rumus Vieta

Referensi

[sunting | sunting sumber]
  1. ^ Stewart 2008, hlm. 383.
  2. ^ [1]
  3. ^ Temme, N. M. (2010), "Error Functions, Dawson's and Fresnel Integrals: Properties", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  4. ^ functions.wolfram.com, Fresnel integral S: Representations through equivalent functions and Fresnel integral C: Representations through equivalent functions. Note: Wolfram uses the Abramowitz & Stegun convention, which differs from the one in this article by factors of π / 2 {\displaystyle {\sqrt {\pi /2}}} {\displaystyle {\sqrt {\pi /2}}}.
  5. ^ Mathar 2012.
  6. ^ Temme, N. M. (2010), "Error Functions, Dawson's and Fresnel Integrals: Asymptotic expansions", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  7. ^ Press et al. 2007.
  8. ^ Cody 1968.
  9. ^ van Snyder 1993.
  10. ^ Boersma 1960.
  • l
  • b
  • s
Daftar fungsi matematika
Fungsi polinomial
  • Fungsi konstan (0)
  • Fungsi linear (1)
  • Fungsi kuadrat (2)
  • Fungsi kubik (3)
  • Fungsi kuartik (4)
  • Fungsi kuintik (5)
Fungsi aljabar
  • Fungsi rasional
  • Fungsi eksponensial
    • Lambert W
    • Superakar
  • Fungsi hiperbolik
  • Fungsi logaritma
    • Berdasarkan basis
      • 2
      • e
      • 10
    • teriterasi
    • Superlogaritma
Fungsi dalam
teori bilangan
  • Fungsi Möbius
  • Fungsi partisi
  • Fungsi perhitungan bilangan prima
  • Fungsi phi Euler
  • Fungsi sigma
Fungsi trigonometri
  • Sinus
  • Kosinus
  • Tangen
  • Sekan
  • Kosekan
  • Kotangen
  • Versinus
  • Koversinus
  • Verkosinus
  • Koverkosinus
  • Ekssekan
  • Ekskosekan
  • Haversinus
  • Hakoversinus
  • Haverkosinus
  • Hakoverkosinus


  • Gudermann
  • sinc
Fungsi berdasarkan
huruf Yunani
  • Fungsi beta
    • Dirichlet
    • taklengkap
  • Fungsi chi
    • Legendre
  • Fungsi delta
    • Fungsi delta Dirac
    • Fungsi delta Kronecker
    • potensial delta
  • Fungsi eta
    • Dirichlet
  • Fungsi gamma
    • Fungsi digamma
    • Barnes
    • Meijer
    • banyak
    • eliptik
    • Hadamard
    • multivariabel
    • p-adik
    • q
    • taklengkap
    • Fungsi poligamma
    • Fungsi trigamma
  • Fungsi lambda
    • Dirchlet
    • modular
    • von Mangoldt
  • Fungsi mu
    • Möbius
  • Fungsi phi
    • Euler
  • Fungsi pi
  • Fungsi sigma
    • Weierstrass
  • Fungsi theta
  • Fungsi zeta
    • Hurwitz
    • Riemann
    • Weierstrass
Fungsi berdasarkan
nama matematikawan
  • Airy
  • Ackermann
  • Bessel
  • Bessel–Clifford
  • Bottcher
  • Chebyshev
  • Clausen
  • Dawson
  • Dirichlet
    • beta
    • eta
    • L
    • lambda
  • Faddeeva
  • Fermi–Dirac
    • lengkap
    • taklengkap
  • Fresnel
  • Fox
  • Gudermann
  • Hermite
  • Fungsi Jacob
    • eliptik Jacobi
  • Kelvin
  • Fungsi Kummer
  • Fungsi Lambert
    • W
  • Lamé
  • Laguerre
  • Legendre
    • chi
    • iring
  • Liouville
  • Mathieu
  • Meijer
  • Mittag-Leffler
  • Painlevé
  • Riemann
    • xi
    • zeta
  • Riesz
  • Scorer
  • Spence
  • von Mangoldt
  • Weierstrass
    • eliptik
    • eta
    • sigma
    • zeta
Fungsi khusus
  • Fungsi bagian bilangan bulat
    • Fungsi bilangan bulat terbesar
    • Fungsi bilangan bulat terkecil
  • Fungsi gergaji
  • Fungsi indikator
  • Fungsi nilai mutlak
  • Fungsi persegi
  • Fungsi segitiga
  • Fungsi tanda
  • Fungsi tangga
    • Fungsi tangga Heaviside
Fungsi lainnya
  • Aritmetik-geometrik
  • eliptik
  • Fungsi hiperbolik
    • konfluen
  • K
  • sinkrotron
  • tabung parabolik
  • tanda tanya Minkowski
  • Pentasi
  • Student
  • Tetrasi
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Integral_Fresnel&oldid=26926397"
Kategori:
  • Integral
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • Semua halaman yang perlu dirapikan
  • Artikel yang belum dirapikan Februari 2025
  • Artikel yang dimintakan pemeriksaan atas penerjemahannya
  • Artikel yang perlu diperiksa terjemahannya Februari 2025
  • Artikel yang diterjemahkan secara kasar
  • Articles with hatnote templates targeting a nonexistent page

Best Rank
More Recommended Articles