More Info
KPOP Image Download
  • Top University
  • Top Anime
  • Home Design
  • Top Legend



  1. ENSIKLOPEDIA
  2. Teori himpunan - Wikipedia bahasa Indonesia, ensiklopedia bebas
Teori himpunan - Wikipedia bahasa Indonesia, ensiklopedia bebas

Teori himpunan

  • Afrikaans
  • Alemannisch
  • አማርኛ
  • Aragonés
  • अंगिका
  • العربية
  • অসমীয়া
  • Asturianu
  • Azərbaycanca
  • Башҡортса
  • Žemaitėška
  • Bikol Central
  • Беларуская
  • Беларуская (тарашкевіца)
  • Български
  • বাংলা
  • Brezhoneg
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Võro
  • Føroyskt
  • Français
  • Nordfriisk
  • Furlan
  • Gaeilge
  • Galego
  • עברית
  • हिन्दी
  • Fiji Hindi
  • Hrvatski
  • Magyar
  • Հայերեն
  • Interlingua
  • Ido
  • Íslenska
  • Italiano
  • 日本語
  • Jawa
  • ქართული
  • Kabɩyɛ
  • Gĩkũyũ
  • Қазақша
  • ಕನ್ನಡ
  • 한국어
  • Кыргызча
  • Latina
  • Lombard
  • Lietuvių
  • Latviešu
  • Македонски
  • മലയാളം
  • Монгол
  • मराठी
  • Bahasa Melayu
  • မြန်မာဘာသာ
  • Plattdüütsch
  • नेपाल भाषा
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Novial
  • Occitan
  • ଓଡ଼ିଆ
  • ਪੰਜਾਬੀ
  • Pälzisch
  • Polski
  • Piemontèis
  • پنجابی
  • پښتو
  • Português
  • Română
  • Русский
  • Русиньскый
  • Саха тыла
  • Scots
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • Kiswahili
  • தமிழ்
  • ไทย
  • Türkmençe
  • Tagalog
  • Türkçe
  • Татарча / tatarça
  • Українська
  • اردو
  • Oʻzbekcha / ўзбекча
  • Vepsän kel’
  • Tiếng Việt
  • West-Vlams
  • Volapük
  • Winaray
  • 吴语
  • მარგალური
  • ייִדיש
  • 中文
  • 文言
  • 閩南語 / Bân-lâm-gú
  • 粵語
Sunting pranala
  • Halaman
  • Pembicaraan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Perkakas
Tindakan
  • Baca
  • Sunting
  • Sunting sumber
  • Lihat riwayat
Umum
  • Pranala balik
  • Perubahan terkait
  • Pranala permanen
  • Informasi halaman
  • Kutip halaman ini
  • Lihat URL pendek
  • Unduh kode QR
Cetak/ekspor
  • Buat buku
  • Unduh versi PDF
  • Versi cetak
Dalam proyek lain
  • Wikimedia Commons
  • Butir di Wikidata
Tampilan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)

Teori Himpunan (Inggris: set theory) adalah bagian dari logika matematika yang mengkaji himpunan dan sifat-sifatnya. Himpunan dapat dideskripsikan sebagai koleksi atau kumpulan objek. Objek-objek tersebut dapat disebut sebagai elemen atau anggota dari himpunan.[1]

Teori himpunan umumnya digunakan sebagai dasar untuk matematika, khususnya dalam bentuk teori himpunan Zermelo-Fraenkel dengan aksioma pilihan.[2] Di luar peran dasarnya, teori himpunan adalah cabang matematika murni. Pengkajian kontemporer ke dalam teori himpunan mencakup beragam subjek, mulai dari struktur garis bilangan real hingga pengkajian tentang konsistensi kardinal besar.

Sejarah

[sunting | sunting sumber]
Georg Cantor.

Topik matematika biasanya muncul dan berkembang melalui interaksi di antara banyak peneliti. Teori himpunan, bagaimanapun, didirikan oleh sebuah makalah pada tahun 1874 oleh Georg Cantor: "Pada Properti Koleksi Semua Bilangan Aljabar Nyata".[3][4]

Sejak abad ke-5 SM, dimulai dengan Yunani ahli matematika Zeno dari Elea di Barat dan awal matematikawan India di Timur, matematikawan memiliki himpunan tak hingga. Yang paling menonjol adalah karya Bernard Bolzano di paruh pertama abad ke-19.[5] Pemahaman modern tentang ketidakterbatasan dimulai pada tahun 1870–1874, dan dimotivasi oleh karya Cantor di analisis riil.[6] Pertemuan tahun 1872 antara Cantor dan Richard Dedekind mempengaruhi pemikiran Cantor, dan berpuncak pada makalah Cantor tahun 1874.

Karya Cantor awalnya mempolarisasi ahli matematika pada masanya. Sementara Karl Weierstrass dan Dedekind mendukung Cantor, Leopold Kronecker, sekarang dipandang sebagai pendiri konstruktivisme matematika. Teori himpunan Cantorian akhirnya menyebar luas, karena kegunaan konsep Cantorian, seperti korespondensi satu-ke-satu di antara himpunan, buktinya bahwa ada lebih banyak bilangan riil daripada bilangan bulat, dan "infinity of infinities" ("Cantor's paradise") yang dihasilkan dari operasi set daya. Kegunaan teori himpunan ini mengarah ke artikel "Mengenlehre", disumbangkan pada tahun 1898 oleh Arthur Schoenflies ke ensiklopedia Klein.

Gelombang kegembiraan berikutnya dalam teori himpunan muncul sekitar tahun 1900, ketika ditemukan bahwa beberapa interpretasi teori himpunan Cantorian menimbulkan beberapa kontradiksi, disebut antinomi atau paradoks. Bertrand Russell dan Ernst Zermelo secara independen menemukan paradoks paling sederhana dan paling terkenal, yang sekarang disebut paradoks Russell: pertimbangkan "himpunan dari semua himpunan yang bukan anggota dirinya sendiri", yang mengarah pada kontradiksi karena harus menjadi anggota dari dirinya sendiri dan bukan anggota dari dirinya sendiri. Pada tahun 1899, Cantor sendiri mengajukan pertanyaan "Berapakah nomor kardinal dari himpunan semua himpunan?", Dan memperoleh paradoks terkait. Russell menggunakan paradoksnya sebagai tema dalam ulasan 1903 tentang matematika kontinental dalam bukunya The Principles of Mathematics.

Pada tahun 1906, pembaca bahasa Inggris memperoleh buku Theory of Sets of Points[7] oleh suami dan istri William Henry Young dan Grace Chisholm Young, diterbitkan oleh Cambridge University Press.

Momentum teori himpunan sedemikian rupa sehingga debat tentang paradoks tidak mengarah pada pengabaiannya. Karya Zermelo pada tahun 1908 dan karya Abraham Fraenkel dan Thoralf Skolem pada tahun 1922 menghasilkan himpunan aksioma ZFC, yang menjadi himpunan aksioma yang paling umum digunakan untuk teori himpunan. Karya analis, seperti Henri Lebesgue, menunjukkan utilitas matematika yang hebat dari teori himpunan, yang sejak itu menjadi jalinan dalam jalinan matematika modern. Teori himpunan biasanya digunakan sebagai sistem dasar, meskipun di beberapa area — seperti geometri aljabar dan topologi aljabar, teori kategori dianggap sebagai fondasi yang disukai.

Himpunan

[sunting | sunting sumber]
Contoh sebuah diagram Venn : irisan anggota dari himpunan A dan B

Himpunan adalah kumpulan dari objek-objek tertentu yang tercakup dalam satu kesatuan dengan keterangannya yang jelas. Untuk menyatakan suatu himpunan, digunakan huruf kapital seperti A, B, C dsb. Sedangkan untuk menyatakan anggota-anggotanya digunakan huruf kecil seperti a, b, c, dsb.

Menyatakan himpunan

[sunting | sunting sumber]

Ada empat cara untuk menyatakan suatu himpunan.

  • Enumerasi
    Dengan mendaftarkan semua anggotanya (roster) yang diletakkan di dalam sepasang tanda kurung kurawal, dan di antara setiap anggotanya dipisahkan dengan tanda koma. Contoh:
    • A = {a, i, u, e, o}
  • Simbol baku
    Dengan menggunakan simbol tertentu yang telah disepakati.
    Contoh:
    • P adalah himpunan bilangan bulat positif
    • Z adalah himpunan bilangan bulat
    • R adalah himpunan bilangan riil
    • C adalah himpunan bilangan kompleks
  • Notasi pembentuk himpunan
    Dengan menuliskan ciri-ciri umum atau sifat-sifat umum (role) dari anggota.
    Contoh:
    • A = {x|x adalah himpunan bilangan bulat}
  • Diagram Venn
    Menyajikan himpunan secara grafis dengan tiap-tiap himpunan digambarkan sebagai lingkaran dan memiliki himpunan semesta (U) yang digambarkan dengan segi empat.

Beberapa ontologi

[sunting | sunting sumber]
Artikel utama: von Neumann universe
An initial segment of the von Neumann hierarchy.

Himpunan adalah murni jika semua anggotanya adalah himpunan, semua anggotanya adalah himpunan, dan seterusnya. Contohnya, himpunan {{}} hanya berisi himpunan kosong adalah himpunan murni tidak kosong. Dalam teori himpunan modern, adalah umum untuk membatasi perhatian pada von Neumann universe himpunan murni, dan banyak sistem teori himpunan aksiomatik dirancang untuk melakukan aksioma himpunan murni. Ada banyak keuntungan teknis dari pembatasan ini, dan sedikit umum yang hilang, karena pada dasarnya semua konsep matematika dapat dimodelkan dengan himpunan murni. Kumpulan di alam semesta von Neumann diatur ke dalam hierarki kumulatif, berdasarkan seberapa dalam anggotanya, anggota anggotanya, dll. Setiap set dalam hierarki ini ditetapkan (oleh transfinite recursion) sebuah bilangan ordinal α {\displaystyle \alpha } {\displaystyle \alpha }, dikenal sebagai peringkat. Pangkat himpunan murni X {\displaystyle X} {\displaystyle X} didefinisikan sebagai batas atas terkecil dari semua penerus dari jajaran anggota X {\displaystyle X} {\displaystyle X}. Misalnya, himpunan kosong diberi peringkat 0, sedangkan himpunan {{}} hanya berisi himpunan kosong yang diberi peringkat 1. Untuk setiap ordinal α {\displaystyle \alpha } {\displaystyle \alpha }, himpunan V α {\displaystyle V_{\alpha }} {\displaystyle V_{\alpha }} didefinisikan terdiri dari semua set murni dengan peringkat kurang dari α {\displaystyle \alpha } {\displaystyle \alpha }. Seluruh alam semesta von Neumann dilambangkan V {\displaystyle V} {\displaystyle V}.

Teori himpunan aksiomatik

[sunting | sunting sumber]

Teori himpunan dasar dapat dipelajari secara informal dan intuitif, sehingga dapat diajarkan di sekolah dasar menggunakan diagram Venn. Pendekatan intuitif secara diam-diam mengasumsikan bahwa suatu himpunan dapat dibentuk dari kelas semua objek yang memenuhi kondisi tertentu tertentu. Asumsi ini menimbulkan paradoks, yang paling sederhana dan paling terkenal adalah paradoks Russell dan paradoks Burali-Forti. Teori himpunan aksiomatik pada awalnya dirancang untuk menyingkirkan teori himpunan dari paradoks tersebut.[note 1]

Sistem teori himpunan aksiomatik yang paling banyak dipelajari menyiratkan bahwa semua himpunan membentuk hierarki kumulatif. Sistem seperti itu datang dalam dua bentuk, yang ontologi terdiri dari:

  • Himpunan sendiri. Ini termasuk teori himpunan aksiomatik yang paling umum, Zermelo–Fteori himpunan fraenkel dengan Aksioma Pilihan (ZFC). Fragmen dari ZFC termasuk:
    • Teori himpunan Zermelo, yang menggantikan skema aksioma penggantian dengan pemisahan;
    • Teori himpunan umum, sebuah fragmen kecil dari teori himpunan Zermelo cukup untuk aksioma Peano dan himpunan terbatas;
    • Kripke–Platek set theory, which omits the axioms of infinity, powerset, and choice, and weakens the axiom schemata of separation and replacement.
  • Himpunan dan kelas yang sesuai. Ini termasuk teori himpunan Von Neumann – Bernays – Gödel, yang memiliki kekuatan yang sama dengan ZFC untuk teorema tentang himpunan saja, dan teori himpunan Morse – Kelley dan teori himpunan Tarski–Grothendieck, keduanya lebih kuat dari ZFC.

Sistem di atas dapat dimodifikasi untuk mengizinkan urelement, objek yang dapat menjadi anggota himpunan tetapi bukan himpunan itu sendiri dan tidak memiliki anggota.

Sistem Yayasan Baru dari NFU (mengizinkan urelement) dan NF (kekurangannya) tidak didasarkan pada hierarki kumulatif. NF dan NFU menyertakan "sekumpulan segalanya", yang relatif setiap set memiliki pelengkap. Dalam sistem ini urelemen penting, karena NF, tetapi bukan NFU, menghasilkan himpunan yang tidak dimiliki aksioma pilihan.

Sistem teori himpunan konstruktif, seperti CST, CZF, dan IZF, menyematkan aksioma himpunannya di intuitif daripada logika klasik. Namun sistem lain menerima logika klasik tetapi menampilkan hubungan keanggotaan yang tidak standar. Ini termasuk teori himpunan kasar dan teori himpunan fuzzy, di mana nilai rumus atom yang mewujudkan hubungan keanggotaan tidak sederhana Benar atau Salah. Model bernilai Boolean dari ZFC adalah subjek terkait.

Pengayaan ZFC yang disebut teori himpunan internal telah diusulkan oleh Edward Nelson pada tahun 1977.

Lihat pula

[sunting | sunting sumber]
  • iconPortal Matematika
  • Glosarium teori himpunan
  • Kelas (teori himpunan)
  • Daftar topik teori himpunan
  • Model relasional-meminjam dari teori himpunan

Catatan

[sunting | sunting sumber]
  1. ^ Pada tahun 1925, John von Neumann mengamati bahwa "teori himpunan pada versi pertama,"naif", karena Cantor, menyebabkan kontradiksi. Ini adalah antinomi yang terkenal dari himpunan semua himpunan yang tidak mengandung dirinya sendiri (Russell), dari himpunan semua bilangan ordinal transfinite (Burali-Forti), dan himpunan semua bilangan real yang dapat ditentukan dengan jelas (Richard)." Dia melanjutkan dengan mengamati bahwa dua "kecenderungan" sedang mencoba untuk "merehabilitasi" teori himpunan. Upaya pertama, dicontohkan oleh Bertrand Russell, Julius König, Hermann Weyl dan L. E. J. Brouwer, von Neumann menelepon "efek keseluruhan dari aktivitas mereka. . . menghancurkan". Berkenaan dengan metode aksiomatik yang digunakan oleh kelompok kedua yang terdiri dari Zermelo, Fraenkel dan Schoenflies, von Neumann mengkhawatirkan itu "Kita hanya melihat bahwa mode kesimpulan yang mengarah ke antinomi gagal, tetapi siapa yang tahu di mana tidak ada yang lain?" dan dia menetapkan tugas, "dalam semangat kelompok kedua", untuk "memproduksi, melalui sejumlah operasi yang murni formal . . . semua set yang ingin kita lihat terbentuk "tetapi tidak memungkinkan untuk antinomies. (Semua kutipan dari von Neumann 1925 dicetak ulang di van Heijenoort, Jean (1967, cetakan ketiga 1976), Dari Frege ke Gödel: Buku Sumber dalam Logika Matematika, 1879–1931, Harvard University Press, Cambridge MA, ISBN 0-674-32449-8 (pbk). Sinopsis sejarah, yang ditulis oleh van Heijenoort, dapat ditemukan di komentar sebelum von Neumann tahun 1925.

Referensi

[sunting | sunting sumber]
  1. ^ "Set Theory (Basics, Definitions, Types of sets, Symbols & Examples)". BYJUS (dalam bahasa Inggris). Diakses tanggal 2024-07-17.
  2. ^ Kunen 1980, hlm. xi: "Teori himpunan adalah dasar matematika. Semua konsep matematika didefinisikan dalam istilah pengertian primitif himpunan dan keanggotaan. Dalam teori himpunan aksiomatik, kami merumuskan beberapa aksioma sederhana tentang pengertian primitif ini dalam upaya untuk menangkap prinsip dasar teori himpunan yang "jelas benar". Dari aksioma semacam itu, semua matematika yang diketahui dapat diturunkan."
  3. ^ Cantor, Georg (1874), "Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen", Journal für die reine und angewandte Mathematik (dalam bahasa German), 77: 258–262, doi:10.1515/crll.1874.77.258 Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
  4. ^ Johnson, Philip (1972), A History of Set Theory, Prindle, Weber & Schmidt, ISBN 0-87150-154-6
  5. ^ Bolzano, Bernard (1975), Berg, Jan (ed.), Einleitung zur Größenlehre und erste Begriffe der allgemeinen Größenlehre, Bernard-Bolzano-Gesamtausgabe, edited by Eduard Winter et al., vol. Vol. II, A, 7, Stuttgart, Bad Cannstatt: Friedrich Frommann Verlag, hlm. 152, ISBN 3-7728-0466-7
  6. ^ Dauben, Joseph (1979), Georg Cantor: Matematika dan Filsafatnya yang Tak Terbatas, Harvard University Press, hlm. 30–54, ISBN 0-674-34871-0.
  7. ^ Young, William; Young, Grace Chisholm (1906), Teori Kumpulan Poin, Cambridge University Press

Bacaan lebih lanjut

[sunting | sunting sumber]
  • Devlin, Keith (1993), The Joy of Sets (Edisi 2nd), Springer Verlag, ISBN 0-387-94094-4
  • Ferreirós, Jose (2007), Labirin Pemikiran: Sejarah teori himpunan dan perannya dalam matematika modern, Basel: Birkhäuser, ISBN 978-3-7643-8349-7
  • Johnson, Philip (1972), Sejarah Teori Himpunan, Prindle, Weber & Schmidt, ISBN 0-87150-154-6
  • Kunen, Kenneth (1980), Teori Himpunan: Pengantar Bukti Kemerdekaan, North-Holland, ISBN 0-444-85401-0
  • Potter, Michael (2004), Teori Himpunan dan Filsafatnya: Pengantar Kritikal, Oxford University Press
  • Tiles, Mary (2004), Filsafat Teori Himpunan: Pengantar Historis ke Surga Penyanyi, Dover Publications, ISBN 978-0-486-43520-6
  • Smullyan, Raymond M.; Fitting, Melvin (2010), Teori Himpunan Dan Masalah Kontinum, Dover Publications, ISBN 978-0-486-47484-7
  • Monk, J. Donald (1969), Pengantar Teori Himpunan, McGraw-Hill Book Company, ISBN 978-0898740066

Pranala luar

[sunting | sunting sumber]
Cari tahu mengenai Teori himpunan pada proyek-proyek Wikimedia lainnya:
Definisi dan terjemahan dari Wiktionary
Gambar dan media dari Commons
Kutipan dari Wikiquote
Buku dari Wikibuku
Wikibooks memiliki buku di:
Matematika deskret/Teori himpunan
  • Daniel Cunningham, Set Theory article in the Ensiklopedia Filsafat Internet.
  • Jose Ferreiros, The Early Development of Set Theory artikel di [Stanford Encyclopedia of Philosophy].
  • Foreman, Matthew, Akihiro Kanamori, eds. Handbook of Set Theory. 3 vols., 2010. Setiap bab mensurvei beberapa aspek penelitian kontemporer dalam teori himpunan. Tidak mencakup teori himpunan dasar yang mapan, di mana lihat Devlin (1993).
  • Hazewinkel, Michiel, ed. (2001) [1994], "Teori himpunan aksiomatik", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Hazewinkel, Michiel, ed. (2001) [1994], "Teori himpunan", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Schoenflies, Arthur (1898). Mengenlehre di ensiklopedia Klein.
  • Bahan Buku daring, dan perpustakaan di perpustakaan Anda dan perpustakaan lain tentang set theory
  • Rudin, Walter B. (April 6, 1990). "Teori Himpunan: Keturunan Analisis". Marden Lecture in Mathematics. University of Wisconsin-Milwaukee – via YouTube.
  • l
  • b
  • s
Teori himpunan
Umum
  • Himpunan (matematika)
Diagram Venn irisan himpunan
Aksioma
  • Adjungsi
  • Batas ukuran
  • Determinasi
  • Gabungan
  • Himpunan kuasa
  • Keberaturan
  • Kebisadibangunan (V=L)
  • Perluasan
  • Pasangan
  • Pemilihan
    • tercacah
    • terikat
    • global
  • Takhingga
  • Aksioma Martin
  • Skema aksioma
    • penggantian
    • spesifikasi
Operasi
  • Gabungan
  • Gabungan lepas
  • Himpunan kuasa
  • Hukum De Morgan
  • Irisan
  • Komplemen
  • Produk Kartesius
  • Selisih himpunan
  • Beda setangkup
  • Konsep
  • Metode
  • Argumen diagonal
  • Bilangan kardinal (besar)
  • Bilangan ordinal
  • Diagram Venn
  • Elemen
    • pasangan terurut
    • rangkap
  • Hipotesis kontinum
  • Induksi lintas-hingga
  • Kardinalitas
  • Kelas
  • Keluarga
  • Korespondensi satu-ke-satu
  • Pemaksaan
  • Semesta yang bisa dibangun
Jenis himpunan
  • Himpunan bagian · Superhimpunan
  • Berhingga (turun-temurun)
  • Takhingga (takhingga Dedekind)
  • Kabur
  • Kosong
  • Rekursif
  • Semesta
  • Tercacah
  • Tak tercacah
  • Transitif
Teori
  • Aksiomatik
  • Alternatif
  • Naif
  • Teorema Cantor
  • Zermelo
    • Umum
  • Principia Mathematica
    • New Foundations (NF, NFU)
  • Zermelo–Fraenkel (ZFC)
    • von Neumann–Bernays–Gödel (NBG)
      • Morse–Kelley
    • Kripke–Platek
    • Tarski–Grothendieck
  • Paradoks
  • Masalah
  • Paradoks Russell
  • Masalah Suslin
  • Paradoks Burali-Forti
Teoretisi himpunan
  • Abraham Fraenkel
  • Bertrand Russell
  • Ernst Zermelo
  • Georg Cantor
  • John von Neumann
  • Kurt Gödel
  • Paul Bernays
  • Paul Cohen
  • Richard Dedekind
  • Thomas Jech
  • Thoralf Skolem
  • Willard Quine
  • l
  • b
  • s
Matematika (Bidang matematika)
Fondasi
  • Filsafat matematika
  • Logika matematika
  • Teori himpunan
  • Teori informasi
  • Teori kategori
  • Teori tipe
Aljabar
  • Abstrak
  • Elementer
  • Homologis
  • Komutatif
  • Linear
  • Multilinear
  • Universal
  • Teori grup
  • Teori representasi
Analisis
  • Kalkulus
  • Analisis fungsional
  • Analisis harmonik
  • Analisis kompleks
  • Analisis real
  • Persamaan diferensial
  • Teori ukuran
  • Teori sistem dinamis
Diskret
  • Kombinatorika
  • Teori graf
  • Teori order
Geometri
  • Aljabar
  • Analitis
  • Diferensial
  • Diskrit
  • Euklides
  • Hingga
  • Trigonometri
Komputasi
  • Analisis numerik (Topik)
  • Ilmu komputer
  • Komputasi simbolik
  • Teori komputasi
  • Teori kompleksitas komputasi
  • Optimisasi matematika
Teori bilangan
  • Aritmetika
  • Geometri Diophantine
  • Teori bilangan aljabar
  • Teori bilangan analitis
Topologi
  • Teori homotopi
  • Aljabar
  • Diferensial
  • Geometris
  • Umum
Terapan
  • Matematika biologi
  • Matematika ekonomi
  • Matematika keuangan
  • Fisika matematis
  • Kimia matematika
  • Psikologi matematis
  • Statistika
  • Statistika matematika
  • Teori peluang
  • Ilmu sistem (Teori kendali, Teori permainan, Riset operasi)
Divisi
  • Matematika murni
  • Matematika terapan
  • Matematika diskret
  • Matematika komputasi
Topik terkait
  • Matematika dan seni
  • Matematika rekreasi
  • Pendidikan matematika
  • Sejarah matematika
  • Category Kategori
  • Portal Portal matematika
  • Kerangka
  • Daftar
  • l
  • b
  • s
Logika matematika
Umum
  • Bahasa formal
  • Aturan formasi
  • Sistem formal
  • Sistem deduktif
  • Pembuktian formal
  • Formal semantik
  • Formula bentukan
  • Himpunan
  • Elemen
  • Kelas
  • Logika klasik
  • Aksioma
  • Deduksi alami
  • Aturan inferensi
  • Relasi
  • Teorema
  • Konsekuensi logis
  • Sistem aksiomatis
  • Teori tipe
  • Simbol
  • Sintaks
  • Teori
Logika tradisional
  • Proposisi
  • Inferensi
  • Argumen
  • Validitas
  • Meyakinkan
  • Silogisme
  • Sisi berlawanan
  • Diagram Venn
Kalkulus proposisional
Logika boolean
  • Fungsi Boolean
  • Kalkulus proposisional
  • Formula proposisional
  • Hubungan logis
  • Tabel kebenaran
Logika predikat
  • Orde-pertama
  • Pembilang
  • Predikat
  • Orde-dua
  • Kalkulus predikat Monadic
Teori himpunan
  • Himpunan
  • Himpunan kosong
  • Enumerasi
  • Ekstensionalitas
  • Himpunan terbatas
  • Fungsi
  • Subhimpunan
  • Himpinan perpangkatan
  • Himpunan terhitung
  • Himpunan rekursif
  • Domain
  • Rentang
  • Pasangan berurut
  • Himputan tak terhitung
Teori model
  • Model
  • Interpretasi
  • Model nonstandar
  • Teori model terbatas
  • Nilai kebenaran
  • Validitas
Teori pembuktian
  • Pembuktian formal
  • Sistem deduktif
  • Sistem formal
  • Teorema
  • Konsekuensi logis
  • Aturan inferensi
  • Sintaks
Teori komputabilitas
  • Rekursi
  • Himpunan rekursif
  • Himpunan rekursif terhitung
  • Permasalahan keputusan
  • Tesis Church–Turing
  • Fungsi terhitung
  • Fungsi rekursif primitif
Kategori
  • l
  • b
  • s
Bidang utama ilmu komputer
Catatan: Templat ini secara kasar mengikuti Sistem Klasifikasi Komputasi ACM tahun 2012.
Perangkat keras
  • Papan sirkuit cetak
  • Periferal
  • Sirkuit terpadu
  • Integrasi skala sangat besar
  • Sistem pada chip (SoCs)
  • Konsumsi energi
  • Otomasi desain elektronik
  • Akselerasi perangkat keras
Organisasi
sistem komputer
  • Arsitektur komputer
  • Sistem benam
  • Komputasi waktu nyata
  • Keandalan
Jaringan
  • Arsitektur jaringan
  • Protokol jaringan
  • Perangkat keras jaringan
  • Penjadwal jaringan
  • Evaluasi kinerja jaringan
  • Layanan jaringan
Organisasi
perangkat lunak
  • Penerjemah
  • Peranti tengah
  • Mesin virtual
  • Sistem operasi
  • Kualitas perangkat lunak
Notasi dan alat
perangkat lunak
  • Paradigma pemrograman
  • Bahasa pemrograman
  • Kompilator
  • Bahasa khusus domain
  • Bahasa pemodelan
  • Kerangka kerja perangkat lunak
  • Lingkungan pengembangan terpadu
  • Manajemen konfigurasi perangkat lunak
  • Pustaka perangkat lunak
  • Repositori perangkat lunak
Pengembangan
perangkat lunak
  • Variabel kontrol
  • Proses pengembangan perangkat lunak
  • Analisis kebutuhan
  • Desain perangkat lunak
  • Konstruksi perangkat lunak
  • Penyebaran perangkat lunak
  • Pemeliharaan perangkat lunak
  • Tim pemrogram
  • Model sumber terbuka
Teori komputasi
  • Model komputasi
  • Bahasa formal
  • Teori otomata
  • Teori komputabilitas
  • Teori kompleksitas komputasional
  • Logika
  • Semantik
Algoritma
  • Desain algoritma
  • Analisis algoritma
  • Efisiensi algoritma
  • Algoritma acak
  • Geometri komputasi
Komputasi
matematika
  • Matematika diskrit
  • Peluang
  • Statistika
  • Perangkat lunak matematis
  • Teori informasi
  • Analisis matematis
  • Analisis numerik
  • Ilmu komputer teoritis
Sistem informasi
  • Pangkalan data
  • Sistem penyimpanan informasi
  • Sistem informasi perusahaan
  • Sistem informasi sosial
  • Sistem informasi geografis
  • Sistem pendukung keputusan
  • Sistem pengendalian proses
  • Sistem informasi multimedia
  • Penggalian data
  • Perpustakaan digital
  • Serambi
  • Pemasaran digital
  • World Wide Web
  • Sistem temu balik informasi
Keamanan
  • Kriptografi
  • Metode formal
  • Peretas
  • Layanan keamanan
  • Sistem deteksi intrusi
  • Keamanan perangkat keras
  • Keamanan jaringan
  • Keamanan informasi
  • Keamanan aplikasi
Interaksi
manusia-komputer
  • Desain interaksi
  • Komputasi sosial
  • Komputasi di mana-mana
  • Visualisasi
  • Aksesibilitas
Kongruensi
  • Komputasi kongruensi
  • Komputasi paralel
  • Komputasi terdistribusi
  • Multithreading
  • Multipengolahan
Kecerdasan buatan
  • Pemrosesan bahasa alami
  • Representasi pengetahuan dan penalaran
  • Visi komputer
  • Perencanaan dan penjadwalan otomatis
  • Metodologi pencarian
  • Metode kontrol
  • Filsafat kecerdasan buatan
  • Kecerdasan buatan terdistribusi
Pembelajaran mesin
  • Pemelajaran terarah
  • Pemelajaran tak terarah
  • Pemelajaran kukuh
  • Pemelajaran multi-tugas
  • Validasi silang
Grafika
  • Animasi
  • Rendering
  • Manipulasi citra
  • Unit pemroses grafis
  • Realitas campuran
  • Realitas virtual
  • Pemampatan citra
  • Solid modeling
Komputasi terapan
  • Komputasi kuantum
  • Perdagangan elektronik
  • Perangkat lunak perusahaan
  • Matematika komputasional
  • Fisika komputasional
  • Kimia komputasional
  • Biologi komputasional
  • Ilmu sosial komputasional
  • Teknik komputasional
  • Informatika kedokteran
  • Seni digital
  • Penerbitan elektronik
  • Peperangan dunia maya
  • Pemungutan suara elektronik
  • Permainan video
  • Pengolah kata
  • Riset operasi
  • Teknologi pendidikan
  • Sistem manajemen dokumen
  • '
Pengawasan otoritas Sunting ini di Wikidata
Umum
  • Integrated Authority File (Jerman)
Perpustakaan nasional
  • Spanyol
  • Prancis (data)
  • Amerika Serikat
  • Latvia
  • Jepang
  • Republik Ceko
Lain-lain
  • Microsoft Academic
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Teori_himpunan&oldid=26958836"
Kategori:
  • Teori himpunan
  • Logika matematika
  • Metode formal
  • Matematika
Kategori tersembunyi:
  • Pages using the JsonConfig extension
  • CS1 sumber berbahasa Inggris (en)
  • Pemeliharaan CS1: Bahasa yang tidak diketahui
  • Galat CS1: teks tambahan: volume
  • CS1: volume bernilai panjang
  • Semua halaman yang perlu dirapikan
  • Artikel yang belum dirapikan Februari 2025
  • Articles with hatnote templates targeting a nonexistent page
  • Galat CS1: nilai parameter tidak valid
  • Artikel Wikipedia dengan penanda GND
  • Artikel Wikipedia dengan penanda BNE
  • Artikel Wikipedia dengan penanda BNF
  • Artikel Wikipedia dengan penanda LCCN
  • Artikel Wikipedia dengan penanda LNB
  • Artikel Wikipedia dengan penanda NDL
  • Artikel Wikipedia dengan penanda NKC
  • Artikel Wikipedia dengan penanda MA

Best Rank
More Recommended Articles